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SUMMARY

Regulatory networks that maintain functional, differentiated cell states are often dysregulated in tumor devel-
opment. Here, we use single-cell epigenomics to profile chromatin state transitions in a mouse model of lung
adenocarcinoma (LUAD). We identify an epigenomic continuum representing loss of cellular identity and pro-
gression toward a metastatic state. We define co-accessible regulatory programs and infer key activating
and repressive chromatin regulators of these cell states. Among these co-accessibility programs, we identify
a pre-metastatic transition, characterized by activation of RUNX transcription factors, which mediates extra-
cellular matrix remodeling to promote metastasis and is predictive of survival across human LUAD patients.
Together, these results demonstrate the power of single-cell epigenomics to identify regulatory programs to
uncover mechanisms and key biomarkers of tumor progression.

INTRODUCTION

Cancer occurs through the acquisition of genetic mutations (Vo-

gelstein et al., 2013) leading to the disruption of lineage-speci-

fying transcription factors (TFs), among other effects (Bradner

et al., 2017; Spitz and Furlong, 2012). Dysregulation of these reg-

ulatory programs is influenced by extensive selection in

response to genetic, epigenetic, and environmental factors (Fla-

vahan et al., 2017; Hanahan and Weinberg, 2000), which pro-

mote tumor development by altering lineage restriction and cell

identity (Flavahan et al., 2017; Lee and Young, 2013; Spitz and

Furlong, 2012; Sur and Taipale, 2016). These selective pressures

begin during the initial transformation of normal cells and

continue through all stages of tumor development, resulting in

a diverse and heterogeneous regulatory landscape (Chen

et al., 2014; Dagogo-Jack and Shaw, 2018).

Genetically engineered mouse models (GEMMs) of cancer

provide an opportunity to study tumor development in experi-

mentally defined conditions. Mice from the KrasLSL(lox-stop-lox)-

G12D/+ Trp53fl/fl (KP) model develop lung adenocarcinoma

(LUAD) and progress to metastasis in the absence of frequent

additional driver somatic mutations (McFadden et al., 2016;

Westcott et al., 2015; Birkbak and McGranahan, 2020). This

model reproducibly mirrors human LUAD progression (Jackson

et al., 2001, 2005), which is one of the leading causes of can-

cer-related deaths worldwide (Dietel et al., 2016; Herbst et al.,

2018). During tumor development, KP cancer cells exhibit sub-

stantial transcriptional dysregulation including altered expres-

sion of the lung lineage factor Nkx2.1 (Chen et al., 2014; Winslow

et al., 2011). However, the full repertoire of TFs driving the

disruption of these regulatory programs has not been estab-

lished. Further characterization of these regulatory transitions

would provide mechanistic insights and opportunities for the

identification of novel biomarkers and treatment strategies for

LUAD patients.

Epigenomic analysis can help define regulatory state transi-

tions dictating normal and altered cellular programs. For

example, studies measuring DNA methylation (Klughammer

et al., 2018), histone modifications (Dubuc et al., 2013; Noberini

et al., 2018), and chromatin accessibility (Corces et al., 2018;

Denny et al., 2016; Latil et al., 2017; Roe et al., 2017) have

defined cell state changes during tumor progression and metas-

tasis. However, these prior studies have predominantly

measured bulk profiles that average over the genetic and regula-

tory heterogeneity of tumor cells present in the sample. Single-

cell methods have provided new insights into the genetic and
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transcriptional states of primary tumors (Flavahan et al., 2017;

Ren et al., 2018). Recent advances in single-cell epigenomics

have opened new possibilities to further define regulatory states

within single cells (Buenrostro et al., 2015a; Cusanovich et al.,

2015; Gaiti et al., 2019; Hou et al., 2016; Shema et al., 2019).

In particular, methods to measure chromatin accessibility using

single-cell assay for transposase accessible chromatin

sequencing (scATAC-seq) provide an opportunity to map the ac-

tivity of cis and trans regulators through tumor development

(Buenrostro et al., 2018; Cusanovich et al., 2018).

Here, we use scATAC-seq to characterize tumor development

from initiation to metastasis in the KP model. To do this, we first

optimized single-cell combinatorial indexing ATAC-seq (sciA-

TAC-seq) (Cusanovich et al., 2015) to profile normal lung cells

and cancer cells derived from primary tumors and metastases.

We utilize these single-cell profiles to identify modules of differ-

ential TF activity, assign relevant module-associated peaks to

genes, and create a framework to explore TF-regulated chro-

matin accessibility patterns in KP tumor development. Overall,

we characterize heterogeneous phenotypic landscapes that

arise in cancer and which can lead to plastic cell states and se-

lection for epigenomic alterations, serving as drivers for tumor

progression and metastasis.

RESULTS

Epigenomic Analysis of KP Cancer Cells at Single-Cell
Resolution
To generate single-cell epigenomic data fromKP-derived cancer

cells, we developed an improved protocol for sciATAC-seq,

which utilizes dual barcoding during transposition and PCR (Fig-

ures 1A and 1B) (Cusanovich et al., 2015). This method provides

a flexible platform for multiplexing samples using barcoded Tn5

transposition in each single-cell experiment. To increase the

throughput and yield of previously described methods (Cusano-

vich et al., 2015; Pliner et al., 2018; Preissl et al., 2018), we (1)

removed fluorescence-activated cell sorting (FACS) of nuclei,

(2) combined recent protocol developments (Chen et al., 2018;

Lake et al., 2018; Preissl et al., 2018), (3) expanded the barcoding

space, and (4) optimized fixation (0.1% formaldehyde), transpo-

sition, and reverse crosslinking conditions (Figures S1A–S1G,

STAR Methods, and Table S1). In species-mixing experiments,

this approach captured 33,663 fragments per cell, with a cell

doublet rate of 7.3% (Figures 1C–1E, S1F, and S1G).

We then used this approach to study tumor development in

the KP model. To isolate cancer cells by FACS, we introduced

a Rosa26-LSL-tdTomato reporter allele into KP mice (KPT) (Fig-

ure 1A) (Madisen et al., 2010). We performed intratracheal instil-

lation with adenovirus (Ad5-SPC-Cre) to initiate lung tumors in

alveolar type II (AT2) cells where mice developed late-stage tu-

mors and metastases 30–35 weeks post infection. Analysis of

late-stage histological sections using a deep learning-based al-

gorithm (STAR Methods) identified extensive intratumoral het-

erogeneity, reflecting a range of tumor grades (grades 1-4) (Fig-

ure 1F) (DuPage et al., 2009). We also performed

immunohistochemistry (IHC) on KPT tumors for the well-studied

tumor progression markers NKX2.1 and HMGA2 (Winslow et al.,

2011) as well as tdTomato to confirm that tumors retain expres-

sion (Figures 1F and S1H; Data S1).

To investigate the diversity of cell states in the KPT model, we

applied the improved sciATAC-seq protocol to normal lung and

FACS-isolated tdTom+ cancer cells in late-stage tumors (Fig-

ure S2A) derived from either individually dissected tumors (Fig-

ure 1G), whole tumor-bearing lungs, or metastases (thymus,

lymph node, liver) (Table S1). Altogether, we collected a total

of 17,274 high-quality epigenomic profiles across 44 individual

samples, comprising 13,670 cancer cells (13,070 tumor-derived

and 600 metastatic cells) and 3,604 normal lung cells (STAR

Methods). From these data, we obtained an average fraction of

reads in peaks (FRIP) of 63.7% and 18,312 unique nuclear frag-

ments per cell. We qualitatively confirmed the high purity of can-

cer cells by visually inspecting the Trp53 locus (Figure S2B). To

analyze cell state diversity, we first computed the chromatin

accessibility across all possible sequence k-mers and TF motifs

per cell (Schep et al., 2017), which we refer to as the ‘‘TF motif

score’’ in the remainder of the text. We visualized these data us-

ing Uniform Manifold Approximation and Projection (UMAP)

(STARMethods) (McInnes et al., 2018) (Figures 2A and S2C); sin-

gle-cell data can be explored interactively using our web

resource: https://buenrostrolab.shinyapps.io/lungATAC/. Sin-

gle-cell grouping in UMAP space was not driven by FRIP or

sequencing depth (Figures S2D and S2E).

Cell Types and States across Normal and Cancer Cells
from the Lung
To compare KPT cancer cells to normal cell states, we first anno-

tated the normal cell population, which clustered into 12 distinct

subsets (Figure S2G and Table S1). To identify each cluster, we

quantified chromatin accessibility surrounding annotated tran-

scription start sites (TSSs) to infer differences around individual

genes (hereafter referred to as ‘‘gene score’’) using an exponential

decay scoring function that weights aligned transposase frag-

ments by their proximity to each gene’s TSS (Figure 2B and

STARMethods) (Granja et al., 2019; Satpathy et al., 2019). To vali-

date this approach, we found that transcriptional activity largely

correlated with calculated gene scores in published bulk ATAC-

seq and RNA-seq data from LUAD tumors (Figure S2F) (Corces

et al., 2018). For visualization, we smoothed gene scores using a

k-nearest-neighbor (k-NN) approach (k = 10; STAR Methods).

Gene scores of knownmarker genes of distinct cell types followed

expected patterns across clusters, including Cd45 (immune),

Cd19 (Bcells), andVimentin (mesenchymalandmacrophagecells)

(Figures 2C–2E). We then used gene scores for de novo assign-

ment of cell identities for each cluster including Epcam-positive

lung cells, namely, alveolar type II (AT2) (Sftpc), alveolar type I

(AT1) (Hopx), ciliated (Foxj1), and club (Scgb1a1) cells (Figures

2F, 2G, S2G, and S2H; Table S1) (Cohen et al., 2018; Lambrechts

et al., 2018; Treutlein et al., 2014) and confirmed the assignments

by computationally matching these data to single-cell RNA-seq

(scRNA-seq) data from normal lung tissue (Figure S2I) (Cohen

et al., 2018).

The sciATAC-seqprofilesof single cancer cells isolated fromthe

KPTmodel largely spanned a continuous epigenomic progression

from profiles reflecting normal AT2 cells (the presumed cell of

origin in this model [Sutherland et al., 2014]) to profiles present in

thymic, lymph node, and liver metastases (Figures 2A and 2G).

The epigenomic states present in cancer cells from KPT tumors

were highly heterogeneous, while metastatic cancer cells

ll
Article

2 Cancer Cell 38, 1–17, August 10, 2020

Please cite this article in press as: LaFave et al., Epigenomic State Transitions Characterize Tumor Progression in Mouse Lung Adenocarcinoma, Can-
cer Cell (2020), https://doi.org/10.1016/j.ccell.2020.06.006

https://buenrostrolab.shinyapps.io/lungATAC/


exhibited reduced heterogeneity (Figures 2G and S2J). Interest-

ingly, rare primary tumor-derived populations across individual

samples overlapped with cancer cells isolated from metastases

and, strikingly, there were no apparent motif differences between

the ‘‘metastatic-like’’ anddistalmetastaticcancercells (Figures2H

and S2K). IHC analyses confirmed that grade 4 regions were

commonly small, located at central regions of the tumor, and pos-

itive for VIM (a gene score feature that specifically marks the met-

astatic cluster) (Figures 2E and 2I). These results suggest that cells

activate ametastatic regulatory programwithin the primary tumor,

supportingdata thatmetastatic seedingoccurs late inKPprogres-

sion and requires local remodeling prior to dissemination (Caswell

et al., 2014). However, we cannot exclude a model in which these

metastatic-like cells arise from reseeded metastatic cells. Alto-

gether, our analysis of KPT tumors shows a high degree of hetero-

geneity, with cancer cells isolated from primary tumors occupying

a continuum of epigenomic states from the cell of origin to cells

with presumed metastatic potential.

Loss of Lineage Identity during Tumor Development
AT2 cells are believed to be a common cell of origin in LUAD, as

evidenced predominantly by the finding that SPC (surfactant

Figure 1. An Optimized Single-Cell ATAC-Seq Approach Enabled Analyses of Single KPT Tumor Cells

(A) Schematic of alleles in the KPT model, LSL: lox-stop-lox; loxP (blue arrows); FRT site (orange arrows). Inset: immunofluorescence (IF) image of a tdTom

positive (tdTom+) tumor.

(B) Schematic of sciATAC-seq strategy for single-cell profiling of tdTom+ cancer cells.

(C) Unique fragments from species-mixing experiment of GM12878 (n = 1) and 3T3 cells (n = 1).

(D) Estimated library sizes of published data (Cusanovich et al., 2015; Pliner et al., 2018; Preissl et al., 2018) and this study, derived from GM12878 cells. Box

intervals represent 25% and 75% bounds.

(E) FRIP by total fragments recovered from GM12878 and 3T3 cells.

(F) IHC of a tumor-burdened lung at 30 weeks after tumor initiation in KPT model, representing H&E with Aiforia defined grades (top) and NKX2.1 IHC. Aiforia

pseudocolored tumor grading (top) represented as Grade 1 (red), Grade 2 (green), Grade 3 (blue), and Grade 4 (orange). Scale bars, 400 mm (bottom left) and

100 mm (bottom right).

(G) Chromatin accessibility tracks generated from bulk ATAC-seq of a KPT tumor (red) (n = 1) and aggregated single cells from a primary KPT tumor (n = 13,070;

orange) at the S100 gene family locus.

See also Figure S1 and Table S1.
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Figure 2. Single-Cell Chromatin Accessibility Data Defined Heterogeneous Normal and KPT Cell States

(A) UMAP visualization of normal and KPT cancer cells profiled by sciATAC-seq. Individual samples are labeled by mouse number (M1–M12), primary tumor (T1–

T5, pool), or metastatic tumor number (N1–N5); color codes represent normal (n = 2), immune-depleted normal lung (n = 1), tdTom+ cells isolated from lung tumors

(n = 23), lymph node or thymic metastases (n = 15), and liver metastases (n = 3). Two examples highlighted in red of individual tumors are shown (right).

(B) Schematic of approach to calculate gene scores using an exponential decay function. Individual fragments are weighted based on the inverse distance to the

TSSs, then summed across the chosen window (9,212 bp) reflecting 1% of the total weight for the chosen exponential half-life (1 kb).

(C–E) Example gene scores are shown on the UMAP for Cd45 (C), Cd19 (D), and Vim (E).

(F) Chromatin accessibility tracks for normal cell clusters at lineage-defining marker genes; track with associated genomic location shown (bottom).

(G) Normal cell-type cluster identities shown on the UMAP of single cells, tumor and metastatic cells labeled in gray and red, respectively, with inset zoom of the

metastatic-like cluster.

(H) Fractions of cancer cells within individual tumors that cluster with metastatic cells (red) or with cells derived from the primary tumor (gray) (n = 35).

(I) Images of NKX2.1, VIM, and H&E staining of a representative grade 4 region (zoom 9.53; scale bar, 100 mm).

See also Figure S2, Table S1, and Data S1.
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protein C)-expressing cells can give rise to LUAD in GEMMs

(Cheung and Nguyen, 2015; Lin et al., 2012; Mainardi et al.,

2014; Sutherland et al., 2014; Xu et al., 2012). The alveolar differ-

entiation hierarchy remains an active area of investigation,

including studies describing rare bipotent progenitor cells as

sharing expression of AT1 and AT2markers (Figure 3A) (Treutlein

et al., 2014). Notably, AT2 cells can transdifferentiate into AT1

cells in response to injury, cell death, and altered WNT signaling

in the alveolar niche (Desai et al., 2014; Jain et al., 2015; Nabhan

et al., 2018; Wang et al., 2018). In the UMAP embedding, we

found a subset of KPT cells that overlapped with normal AT2

cells and others with normal AT1 cells, motivating an analysis

of cell identity during tumor development (Figures 2A and 2G).

To characterize KP epigenomic states with respect to alveolar

identity, we first defined gene and TF motif score differences be-

tween normal AT1 and AT2 cells. Differential TFmotif score anal-

ysis and hierarchical clustering identified higher CEBPA TF motif

accessibility in AT2 cells, in contrast to higher TEAD and GATA

TFmotif scores in AT1 cells (Figures 3B, S3A, and S3B). Further-

more, differential analysis of gene scores between AT1 and AT2

cells revealed Cebpa (a lineage-defining TF) and Cav1 (a caveo-

lae-associated protein) as the most significant AT2- and AT1-

specific gene score markers, respectively (Figures 3C and

S3C; Table S2) (Campbell et al., 1999; Treutlein et al., 2014;

Wang et al., 2018). We used AT1, AT2 and tumor gene score sig-

natures (n = 1,393 genes) to compare KPT-derived cancer cells

to alveolar cells. Interestingly, cancer cells at the left side of the

continuum scored highly for both AT1-like and AT2-like signa-

tures, while cancer cells with late-stage features show reduced

correlation, suggesting a global loss of lineage identity (Figures

3D–3F and S3D). KPT cancer cells expressed markers of both

AT1 (HOPX, PDPN) and AT2 (SPC, SFTPB) cell identity, including

at earlier time points, suggesting that transformation induces

lineage infidelity (Figures 3G–3I and S3E–S3G) (Ge et al.,

2017). Analysis of marker gene scores and TF motif scores, as

well as scoring cancer cells with single-cell RNA-sequencing

(scRNA-seq) signatures from normal lung development (Figures

S3H–S3J), were consistent with this finding (Cohen et al., 2018;

Mund et al., 2008). Together, these data show that KP cancer

cells lose AT2 lineage identity through tumor progression.

Based on these findings, we propose that primary cancer cells

adopt analtered identity arising fromeither (1) transformationof an

immature cell, (2) transdifferentiation of AT2-like cells during tumor

progression, or (3) dedifferentiation. To assess these possibilities,

we performed a droplet-based scATAC-seq experiment on 4,610

cancer cells isolated at 8 weeks after tumor initiation (Figures 3H–

3J) (Lareau et al., 2019) and projected these epigenomic profiles

onto the coordinates of the original UMAP (Figure 3J). Cancer cells

from the early time point exhibited epigenomic profiles that largely

overlapped with normal AT2 cells, suggesting that early cancer

cells maintain an AT2 identity and that heterogeneity arises over

time in the KPT model. To further validate this finding, we per-

formed multiplexed IHC in 8-week tumors and found that KPT tu-

mors were largely SPC positive (Figures 3I and S3G) (Mainardi

et al., 2014; Sutherland et al., 2014; Xu et al., 2012). Altogether,

we propose that an immature alveolar cell identity likely arises

across tumor development, consistent with scRNA-seq analyses

performed along a tumorigenesis time course in the KP model

(Marjanovic et al., 2020 [accompanying paper]).

Co-accessibility Modules Reveal Epigenomic
Dysregulation in Cancer Cells
Epigenomic profiling of KPT-derived cancer cells identified a

spectrum of cell states indicating substantial heterogeneity in tu-

mors. To study the regulatory programs underlying these epige-

nomic states, we performed unsupervised hierarchical clustering

of all cancer cells based on significant TF motif accessibility

scores (n = 350 motifs) and found that cancer cells reflected dif-

ferences across many TF motifs including NKX2.1, CEBPA,

TEAD4, FOS, and RUNX2 (Figures 4A and S4C). Importantly,

the NKX2.1 TF motif score clearly demarcated early versus late

epigenomic states (Figure 4B). To determine the extent of chro-

matin change reflected by the NKX2.1 TF score at individual

peaks, we grouped cells as ‘‘high’’ or ‘‘low’’ for the NKX2.1 TF

motif score (defined as being above or below the median score,

respectively). We next identified differential peaks across these

two groups revealing extensive chromatin accessibility changes

associated with tumor progression (n = 38,164 peaks; false dis-

covery rate [FDR] q < 10�6; Figures 4B–4D).

The analysis of TF motif scores revealed numerous putative

cancer cell regulators (Figure 4A); however, TFs typically func-

tion combinatorially to drive distinct regulatory programs (Ger-

stein et al., 2012). We therefore reasoned that classification of

chromatin accessibility changes bymultiple differential TFmotifs

may better serve to uncover regulatory programs underlying dis-

ease progression. As such, we developed a computational strat-

egy to identify chromatin accessibility peaks that are co-acces-

sible and concordant with changes in TF motif scores (STAR

Methods). In brief, we grouped cancer cells as TF ‘‘high’’ or

‘‘low’’ based on each TF motif score, and for each TF motif we

tested all peaks for differential accessibility between the ‘‘high’’

versus ‘‘low’’ cells. Next, we repeated this procedure indepen-

dently for each non-redundant and variable TF motif (n = 67; Fig-

ures 4D, 4E, S4A, and S4B). Finally, to define co-accessibility

modules, we took the union of all differential peaks, resulting in

74,732 chromatin accessibility changes (FDR q < 10�6), and

clustered these differential peaks using their fold change in

mean chromatin accessibility for each TF ‘‘high’’ versus ‘‘low’’

comparison. This approach resulted in 11 distinct clusters of

peaks (henceforth referred to as ‘‘modules’’) (Figure 4F) that

demonstrated extensive reorganization within cancer cells

across tumor evolution.

Next, we sought to determine the functional identity of each

module in tumor development. To this end, using a similar

approach to determining TF motif scores, we first computed

the enrichment of accessibility for each module’s peaks across

single cells (Schep et al., 2017), which we refer to as module

scores (STARMethods and Figure 4G). To determine the biolog-

ical relevance of each module, we first performed de novo

assignment of well-established KPT cancer progressionmarkers

(TFmotif scores and gene scores) tomodules (Table S3). In addi-

tion, we generated a set of module-associated genes by assign-

ing gene scores to their most correlated modules. Together with

further analyses described later in this article, we assigned func-

tional identities to the 11 modules (Figures 4F and 4G). Modules

6, 5, 11, and 7 were associated with alveolar identity and earlier

stages of KP transformation, with modules 5 and 11 most asso-

ciated with tumor cells isolated from the 8-week time point (Fig-

ures 4G, S4D, and S4E; see Table S3 for relevant gene scores
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Figure 3. KPT Cancer Cells Reflected AT1 and AT2 Epigenomic States

(A) Schematic of epithelial cell types and alveolar differentiation hierarchy.

(B) Hierarchical clustering of AT1 (n = 67) and AT2 (n = 186) cells based on top significant TF motif scores, labeled by AT1 and AT2 cluster identity (bottom).

(C) Volcano plot of differential gene scores between AT1 versus AT2 cells. Geneswith a differential gene score greater than 1.8 or less than�1.8 are highlighted in

red with �log10 p value shown.

(D) Correlation of each cancer cell to normal AT1 and AT2 cells using gene score signatures. Cells are colored by their Pearson’s r differential correlation co-

efficients.

(E) Images of serial sections of early KP tumors (n = 2), late KP tumors (n = 2), and lymph node metastases (n = 2) stained for SFTPB (AT2 marker) and CAV1 (AT1

marker). Scale bars, 250 mm except Met tumor 2, 125 mm; inset scale bar, 50 mm.

(F) Fraction of single cancer cells per sample that resemble AT1-like, AT2-like, or late-stage cells; red = AT1, orange = AT2, and gray = late (n = 23).

(G) Multiplexed IHC in a late-stage tumor sample; whole lung and two individual tumors shown; red (SPC; AT2), yellow (NKX2-1), green (HOPX; AT1), and overlay

with DAPI. Scale bars, 0.53, 2,000 mm (whole lung); 7.53, 200 mm (tumor 1); 4.53, 200 mm (tumor 2).

(H) Aiforia graded 8-week tumor-burdened lung (red = grade 1, green = grade 2, blue = grade 3, and orange = grade 4).

(I) Multiplexed IHC staining of an exemplar lung lobe at 8 weeks post initiation stained with SPC (red), NKX2-1 (yellow), HOPX (green), and overlaid channels with

DAPI. tdTom+ cells from entire lung used for scATAC-seq profiling. Scale bars, 0.73, 1,000 mm (whole lung) and 103, 100 mm (tumors).

(J) scATAC-seq profiling and projection of early time point (ETP) cells (n = 4,610) onto the original UMAP clustering of all lung cells (gray points). ETP cells are

colored by cluster density.

See also Figure S3 and Table S2.
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and motifs used for module assignments). In addition, modules

1, 9, 2, and 4 exhibited features of late-stage tumor progression.

Interestingly, modules 1 and 9 coincided most closely with loss

of NKX2.1 TF motif accessibility and marked all late-stage-like

cancer cells, while modules 2 and 4 were most closely associ-

ated with progression toward metastasis. To further delineate

the identity of each module, we ranked genes by the correlation

of their gene scores to module accessibility scores across all

cancer cells and performed gene set enrichment analysis

(GSEA) for each module-ranked gene list (Table S3). These ana-

lyses confirmed progressive enrichment of gene sets associated

with transforming growth factor b (TGF-b) signaling, secreted

factors, and extracellular matrix (ECM) in later-stage modules,

with EMT hallmark genes among module 2- and module 4-

Figure 4. Chromatin Co-accessibility Modules Defined Cell State Transitions during Tumor Progression

(A) Hierarchical clustering of cancer cells (n = 13,670) using significant TFmotif scores (n = 350motifs) associated with tumor progression score as calculated by a

distance from a fit polynomial line (bottom).

(B) UMAP of cancer cells colored by NKX2.1 TF motif score.

(C) Histogram of NKX2.1 TF motif scores for all cancer cells. Cells are delineated as ‘‘high’’ or ‘‘low’’ based on the median motif score across cancer cells (blue

dashed line).

(D) Differential chromatin accessibility for each peak between NKX2.1 TF motif ‘‘high’’ or ‘‘low’’ cells. Peaks with a significant FDR (q < 10�6) calculated by a two-

sample Student’s t test are shown in dark blue.

(E) Schematic depicting the co-accessibility module analysis workflow.

(F) Clustering of differential TF motif associated peaks (n = 74,732 rows) using the log2 fold change (FC) of mean accessibility between ‘‘high’’ and ‘‘low’’ cell

groups per TF motif (n = 67 columns). Clustering is performed based on the Louvain method. Peaks are hierarchically clustered per module for visualization.

(G) UMAP plots highlighting single-cell module scores for cancer cells.

See also Figure S4 and Table S3.
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associated genes (GSEA FDR q = 0.001 and q% 0.001, respec-

tively) (Figures S4F and S4G) (Heldin et al., 2012; Katsuno et al.,

2019). Modules 7 and 10 were associated with high HNF4A TF

motif scores and gastric gene signatures, consistent with a

known gastric-like state in the KP model (Figures S4F and

S4H) (Snyder et al., 2013). Furthermore, module 8 was enriched

for immune and senescence TF motifs (IRF1, SFPI1, and MITF)

(Giuliano et al., 2010), while module 3 delineated a transition be-

tween early and late stages of cancer progression. Overall, we

identified extensive gene regulatory alterations across the tumor

progression spectrum that clearly delineates key pro-tumori-

genic programs.

Combined Gene and Motif Scores Reveal Regulators of
Tumor Progression
We next examined the relationship between gene activity and

motif accessibility of TFs in an effort to determine their regulatory

activity. Notably, using published bulk ATAC-seq and RNA-seq

data (Corces et al., 2018), we found that gene scores for TFs

had a stronger signal relative to gene expression (Figure S5A)

compared with non-TF-encoding genes, likely because TF

gene expression tends to be controlled by several layers of reg-

ulatory control (González et al., 2015). Aggregated single cells

with high activity for representativemodules described above re-

vealed significant chromatin accessibility changes surrounding

TFs at different cell states, including the 8-week cancer cells

(ETP), alveolar identity modules (modules 5, 6, and 11), and

late-stage modules (modules 9, 2, and 4) (Figure 5A). To investi-

gate the function of these TFs, we reasoned that correlation of TF

motif scores to TF gene scores (referred to hereafter as TFmotif-

gene pairs) may identify activating (positive correlation) or

repressive (negative correlation) regulators of chromatin acces-

sibility genome-wide (STAR Methods). Indeed, correlating TF

motif-gene pairs across cancer cells revealed 85 (n = 63 positive,

n = 22 negative) putative TF regulators of chromatin accessibility

(Figures 5B–5D and S5B; Table S4).

The significantly correlated and anti-correlated TF motif-gene

pairs included a number of known and novel regulators of KP

cancer cell states. Among them were key lineage regulators of

AT1 (Tead4), AT2 (Cebpa), lung (Nkx2.1, Gata6), and gastric

(Hnf4a) development (Li et al., 2000; Treutlein et al., 2014; Zhang

et al., 2007) as well as known tumor progression activators

(Fosl1, Myc) and repressors (Zeb1) (Caramel et al., 2018; Gabay

et al., 2014; Vallejo et al., 2017). We next assigned each signifi-

cant TF to modules by correlating TF gene scores to module

scores across cancer cells (Figure 5E). We identified novel

Nkx-family activators (gain of non-lung lineage Nkx-family mem-

bers Nkx6.2 and Nkx2.9), likely reinforcing the NKX motif activity

early in tumor progression (Figure 5E). Furthermore, NKX2.1

motif accessibility was repressed prior to loss of the Nkx2.1

gene score, suggesting that the NKX2.1 TF motif score may be

modulated by additional chromatin regulators or post-transcrip-

tional regulation (Figures 4B and S4H). Runx factors were asso-

ciated with modules 9 and 2, suggesting that RUNX-mediated

changes occur late in cancer progression and metastasis (Fig-

ure 5E). The activators RUNX1 and RUNX2 have been found to

be upregulated in several cancer types and are associated

with metastatic progression, including in LUAD, breast, and

prostate cancers (Bai et al., 2017; Li et al., 2013; Ramsey

et al., 2018; Xie et al., 2016; Zheng et al., 2016). Onecut2 and

Sox9 were associated predominantly with module 2, while

Sox2 was most correlated with module 4 (Figure 5E). Onecut2

has been identified as a master regulator of androgen signaling

and is a mediator of metastasis (Chuang et al., 2017; Guo

et al., 2019; Ma et al., 2019; Rotinen et al., 2018) while Sox2

and Sox9 activities have been associated with the emergence

of primitive epithelial programs during metastatic progression

in studies of human LUAD (Laughney et al., 2020).

To validate the expression of these putative regulators, we

performed IHC on advanced KP tumors and lymph node metas-

tases. Similar to our gene score analysis, we found heteroge-

neous protein expression of RUNX1, RUNX2, and ONECUT2 in

KP primary lung tumors, with near ubiquitous staining of these

factors in late-stage cancer cells (defined as cells marked by

ZEB1 or HMGA2 expression) (Figures 5F and S5C). Regions in

the KP primary tumors and lymph node metastases with low

NKX2.1 and high HMGA2 expression exhibited the most robust

staining of RUNX1 and RUNX2 expression, suggesting that

these regulatory drivers initiate programs that mediate progres-

sion (Figures 5G and 5H). While RUNX expression was largely

restricted to late-stage tumors, we also found RUNX1 expres-

sion in the airway (which lacked RUNX2 staining), suggesting dif-

ferential RUNX expression patterns during normal lung develop-

ment (Figure S5D). In addition, two of the predicted early-stage

repressors, BATF and ZKSCAN5, were expressed in early-stage

tumors but not in late-stage tumors, suggesting that these re-

pressors, among others, may restrict tumor progression (Fig-

ure S5E). Lastly, module analysis of microRNA (miRNA) gene

scores, which function to modulate gene expression and are

not detected from scRNA-seq analyses, identified known (Han

et al., 2014; Kolesnikoff et al., 2014; Li et al., 2017) and novel

miRNA regulators (Figures S5F and S5G). To date, the compre-

hensive identification of master regulator activators and repres-

sors that drive tumor progression has been challenging; we sug-

gest that the strategies outlined here may be used to identify

tumor development regulators in other cancer subtypes.

Disruption of RUNX Family TFs Activates Gene
Programs that Drive Tumor Progression and Metastasis
One striking finding of the module analyses was that the regula-

tory transition associated with loss of NKX-mediated regulation

could be explained by a progressive gain of several late-stage

co-accessibility modules. Importantly, we found that Runx1/2

gene scores and RUNX TF motif scores were strongly correlated

with module 9 (Figures 4G and 5C). Given the demonstrated role

of RUNX TFs in tumor progression in other settings (Ge et al.,

2016; Pratap et al., 2005, 2008), we next sought to functionally

characterize the regulatory role of RUNX factors on chromatin

accessibility surrounding genes associated with cancer progres-

sion. To establish a system to test this, we derived KP cancer cell

lines from primary tumors and found increased expression of

RUNX2 in metastatic (low NKX2.1 expression) compared with

non-metastatic cell lines (high NKX2.1 expression) (Winslow

et al., 2011) while RUNX1 was ubiquitously expressed (Fig-

ure S6A–S6C). To interrogate RUNX-mediated regulation in KP

cancer cells, we engineered KP cell lines to express Cas9 and

utilized CRISPR-based perturbation (knockout and activation)

to modulate the expression of RUNX1, RUNX2, and RUNX3
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Figure 5. Regulatory Analysis of Cancer Cells Identified Chromatin Activators and Repressors

(A) Chromatin accessibility tracks for cells with high module scores and normal AT1/AT2 cells, respectively, at key TFs. Modules include early time point (ETP),

early-stage (5, 11), and late-stage (9, 2, 4) modules. Module high was defined as two standard deviations above the mean module score across cells.

(B and C) UMAP highlighting single-cell TF motif scores and motif logos (left), and gene scores (right) for FOSL1 (B) and RUNX2 (C) in cancer cells.

(D) Correlation of TF motif scores with gene scores for each TF (n = 769) plotted against the TF motif score variability. Significantly variable TF motifs (motif score

SD R 1.2) correlated with their gene score (permutation p < 0.001) are shown in red; TFs with positive or negative correlation are highlighted as activators or

repressors, respectively. Permutation p values were calculated using a Z-test between the observed TF motif gene correlation coefficient to the permuted

correlation coefficients. TF motif scores significance was computed with deviation Z-scores across cells.

(E)Normalizedcorrelation (max/minnormalizedusingPearson’s rcorrelations)ofTFgenescores tomodulescoresdelineatedbyactivators (n=58)and repressors (n=14).

(F) IHC of heterogeneous late-stage TFs stained for NKX2.1 (module 5), RUNX1 (module 9/2), RUNX2 (module 9/2), ONECUT2 (module 2), and ZEB1 (module 4).

Scale bars, 250 mm; inset scale bars, 50 mm (n = 1).

(G) Grade 4 regions stained for RUNX1, RUNX2 and HMGA2 (n = 1).

(H) Lymph node tumors stain for RUNX2 and ZEB1. Scale bars, 250 mm; inset scale bars, 50 mm (n = 1).

See also Figure S5 and Table S4.
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(Figure 6A and STAR Methods). Perhaps because RUNX1 is

already highly expressed in KP cell lines, we were unable to

further increase RUNX1 expression via CRISPR activation.

CRISPR knockout (KO) and CRISPR activation (CRISPRa) were

achieved by transducing cell lines with guides targeting Runx1

and Runx2 and with truncated guides recruiting the HSF-MS2-

p65 complex to the promoter of Runx2 and Runx3 (Horlbeck

et al., 2016). KO was performed in RUNX2 high metastatic cell

lines (n = 2) and overexpression was performed in a RUNX2

low non-metastatic cell line (n = 1) and a metastatic line (n = 1).

We confirmed activation and KO of RUNX proteins by western

blot (Figures 6B, 6C, and S6D) and performed bulk ATAC-seq

to determine the impact of RUNX family activity in KP cell lines.

To analyze chromatin-induced changes associated with

RUNX family perturbation, we performed TF motif and gene

score regression analyses on RUNX-altered cell lines compared

with single guide RNA (sgRNA) controls. Strikingly, overexpres-

sion (OE) guides increased the RUNX TF motif score and, in

contrast, KO guides decreased the score (Figure 6B). Impor-

tantly, RUNX protein OE and KO resulted in anti-correlated chro-

matin accessibility changes at RUNX TF motifs around relevant

genes, suggesting that RUNX family members have functional

overlap (Figures 6B and S6E). We next defined differential

gene scores associated with RUNX TF perturbation by corre-

lating each gene score (normalized to controls) to the RUNX TF

motif score across KO and OE conditions. GSEA of RUNX

perturbation score associations against module-associated

genes revealed that these gene signatures were significantly

correlated with late-stage modules 9 and 4 and known onco-

genic gene programs, including TGF-b signaling (FDR q %

0.001; Figures S6F–S6H; Tables S5 and S6).

In further functional studies, we focused our attention on

RUNX2 due to differential protein expression in tumor-derived

cell lines. KP cancer cells have been found to secrete and differ-

entially regulate ECM in late stages of the disease, which is

thought to reshape the local environment and provide signals

to adjacent cells (Brady et al., 2016; Gocheva et al., 2017; Re-

ticker-Flynn and Bhatia, 2015). Therefore, we hypothesized

that RUNX2 activity might affect extracellular secretion. To

assess this directly, we analyzed the conditioned cell culture me-

dia fromRUNX2-altered cell lines using extracellular protein anti-

body arrays (Figures 6D, S6I, and S6J; Table S5). We confirmed

that RUNX2 KO cells have reduced secretion of well-studied

ECM proteins, first identified using chromatin accessibility

gene scores, including Lgals3 (Figure 6D). Genes associated

with ECM components, cytoskeletal remodeling, and altered

RUNX activity were upregulated in the single-cell data, including

PODNL1 and LGALS1 (galectin-1) among others (Figures 6E, 6F,

and S6K). Using multiplexed IHC, we found that RUNX2 positive

tumor cells co-localized with LGALS1 expression, demon-

strating the utility of chromatin accessibility studies to identify

downstream targets of TFs (Figures 6G and S6L–S6N). Finally,

we performed tail vein injections of control and RUNX2 KO can-

cer cell lines to assess their metastatic potential. Notably, dele-

tion of RUNX2 in metastatic KP cells resulted in significantly

fewer lung metastases as well as increased survival of injected

mice (Figures 6H and S6O). This functional validation of

RUNX2 biology demonstrates the utility of TF motif-gene ana-

lyses for discovering master regulators and provides an analyt-

ical framework for characterizing downstream changes induced

by TF perturbations.

Regulatory Networks Derived from Mouse KP Cancer
Cells Predict Survival in Human LUAD Patients
We next investigated whether RUNX-mediated dysregulation

might be relevant to human LUAD tumor progression. To this

end, we performed IHC on human LUAD tissue microarrays

(TMAs). Increased RUNX1 and RUNX2 staining was observed

in higher-grade lesions and confirmed in TMAs from the Human

Protein Atlas, consistent with the role of RUNX in tumor progres-

sion (Figures 7A, S7A, and S7B). We next tested whether mod-

ule-associated gene scores defined in our study could represent

new signatures with prognostic value in human LUAD patients.

We determined representative gene signatures for each module

by assigning the top 200 genes whose gene scores were most

correlated with the module accessibility scores (Figures 7B

and S7C; Table S6). This analysis identified several expected

gene associations, such as Sftpc with the AT2-like module 11

and EMT genes Vimentin and Twist1 with late-stage module 4

(Figure 7B). To test whether genes associated with each of the

11 co-accessibility modules were predictive of clinical outcome

in human LUAD, we queried them against The Cancer Genome

Atlas (TCGA) collection of bulk primary LUAD RNA-seq profiles

(n = 506) (Figure 7B) (Campbell et al., 2016; Cancer Genome

Atlas Research Network, 2014). We stratified patients by high

versus low average expression of each module gene signature

and tested for association with overall patient survival. Genes

associated with late-stage modules 3 and 9 were the most pre-

dictive of poor survival (log-rank test p = 0.0031 and 0.0035,

respectively) independent of patient genotype (Figures 7C, 7D,

and S7D–S7F). We also found that modules highlighted in the

early stages of tumor progression (modules 11, 7, and 5) were

associated with better prognosis (p < 0.05), with module 11 hav-

ing the greatest prognostic relevance (p = 2 3 10�6) (Figures 7C

and S7D). The module 9 gene signature outperformed NKX2.1

expression in predicting overall patient survival (Figure S7G),

suggesting that regulatory analyses of single-cell epigenomics

data can serve as surrogate markers for underlying processes

defining tumor development, and thus can more accurately pre-

dict survival in human patients.

DISCUSSION

This single-cell epigenomics study adds to an increasing body of

evidence that a common feature of tumor development is intra-

tumoral heterogeneity, including at the chromatin level (Hinohara

and Polyak, 2019; Lawson et al., 2018). Here we use a single-cell

approach to determine the epigenomic evolution in a well-estab-

lished GEMM of LUAD with limited confounding somatic varia-

tion. Together with Marjanovic et al. (2020) (accompanying pa-

per), we provide a deep characterization of the chromatin

accessibility and transcriptional changes that drive cancer pro-

gression in this model. Single-cell epigenomic profiling provides

a complementary approach to the study of gene regulation, as

TFs are susceptible to technical dropout in scRNA-seq ap-

proaches. In this study, we utilized the full epigenome asmarkers

for cell state rather than limiting our analysis to individual gene

markers, powering robust cell state assignments. We identify
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Figure 6. CRISPR Perturbation Revealed RUNX TFs Regulate Extracellular Matrix Remodeling

(A) Schematic of the strategy used to OE or KO TFs in tumor-derived KP cell lines.

(B) Hierarchical (KO or OE versus control) RUNX TF motif scores (defined by RUNX perturbation score; top, bar plot) and associated differential gene scores (KO

or OE versus control; bottom, heatmap) for each RUNX1, RUNX2, or RUNX3 KO (1183T3 and 860T3; metastatic) or OE (853T2; non-metastatic) bulk ATAC-seq

experiment. RUNX perturbation score was determined using the slope from a linear regression. Samples include 1183T3: controls (n = 10), RUNX1 KO (n = 8),

RUNX2 KO (n = 10), RUNX3 KO (n = 1), RUNX2 OE (n = 3), RUNX3 OE (n = 5); 860T3: controls (n = 10), RUNX1 KO (n = 10, RUNX2 KO (n = 9), RUNX3 KO (n = 2);

853T2: controls (n = 5), RUNX2 OE (n = 6), 853T2 RUNX3 OE (n = 3).

(C) RUNX1 and RUNX2 expression in CRISPR KO cells from two independent guides as assessed by western blot; HSP90 shown as a loading control.

(D) Log2 fold change (RUNX KO versus control) of extracellular matrix proteins from ametastatic cell line (1183T3) with control (sgCON) (n = 1) or sgRunx2 (n = 1).

Arrays with duplicate antibody spots and p values were determined by a Z test *p < 0.01.

(E) Chromatin accessibility tracks at differential RUNX genes (identified in B) for representative metastatic sgCON (control), metastatic sgRunx2 (KO), non-

metastatic sgCON (control), non-metastatic Runx2 (OE), and module-high cells (for comparison to KPT model).

(F) Gene score for Lgals1 derived from cancer cells.

(G) Multiplexed IHC for late-stage region in KPT tumor. Overlaid image (left), individual channel insets: green (NKX2-1), yellow (RUNX2), and red (LGALS1). Scale

bars, 2.43, 500 mm (whole tumor); 7.53, 200 mm (zoomed region).

(H) Intravenous metastasis experiments with schematic for tail vein injection (left top). Exemplar IHC stains for example control and sgRUNX2 KO tumors (left

bottom) (n = 5 per arm, repeated in triplicate, one replicate shown). Survival curve (right) with log-rank p value (n = 5 per arm) with survival log-rank (Mantel-Cox)

test. **p < 0.01.

See also Figure S6 and Table S5.
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heterogeneous cell states that reveal a diverse and continuous

landscape of regulatory transitions. Within this diverse land-

scape, we find evidence of lineage infidelity (Ge et al., 2017)

and cellular plasticity, as demonstrated by cells reflecting AT2,

mixed, and AT1-like states through tumor progression, consis-

tent with cell identities shown in the accompanying scRNA-seq

study (Marjanovic et al., 2020) and recently reported cell states

in human LUAD tumors (Laughney et al., 2020). Furthermore,

we find evidence of the high plasticity state described in Marja-

novic et al. (2020), with chromatin state changes surrounding cell

surface genes Slc4a11, Tigit, and Itga2 (Figure 7B).

Interestingly, we identified cells in primary tumorswith regulato-

ry states resembling those of cells isolated from metastatic sites.

Thesemetastatic-like cells exist within the primary tumors at a low

frequency in a subset of tumors, indicating that transformation to

this state is rare and stochastic. Cells isolated from metastases

were less heterogeneous than primary tumors, consistent with

the notion that cancer cells ultimately funnel toward a stable epi-

genomic state and add a regulatory context to prior reports

demonstratingmetastatic cells asmore genetically homogeneous

thanprimary tumors (Turajlic et al., 2018). Importantly,we also find

that the heterogeneity observed across a collection of tumorswas

largely reproducible across individual tumors. These data support

a model of a rather constrained set of cell state progressions that

lead toward a metastatic state. Our data are also compatible with

the emergence of non-productive paths in tumor development

that do not ultimately result in metastasis.

To characterize this diverse regulatory landscape, we devel-

oped a computational framework for determining co-accessible

modules using TF motif-driven chromatin changes. We also

used gene scores to infer (1) the upstream TF regulators of these

modules and (2) the downstream target genes they regulate. This

analytical approach allowed us to collapse the diverse spectrum

of tumor states into 11 coherent co-accessibility programs—

defined by the combinatorial activity of TFs—that we posit to

represent meaningful regulatory transitions across the heteroge-

neous landscape. Altogether, our co-accessibility analysis

largely uncovered developmental and lineage-identity regula-

tors, adding to the concept that chromatin accessibility-medi-

ated regulation is predominantly linked to developmental pro-

cesses (González et al., 2015; Hnisz et al., 2013). By contrast,

gene expression analysis integrates RNA processing, RNA sta-

bility, cell size, and proliferation programs along with lineage

identity (Shema et al., 2019). Altogether, our data reveal massive

reprogramming of the regulatory landscape within LUAD tumors,

without direct genetic alteration of TF function.

Figure 7. Module-Associated Genes Were Predictive of Survival across Human LUAD Cases
(A) LUAD tumor microarray (TMA) map stained with RUNX1. Individual images of tumor sections with grade indicated on tumor image.

(B) Schematic of humanmodule survival analyses.Module-specific genes frommouse cancer cells were used to score RNA-seq data fromprimary human LUADs

in TCGA (n = 506) to determine association with patient survival.

(C) Significance of module-associated genes with overall survival (OS) based on a log-rank test (dashed lines: log-rank p = 0.05). Positive values denote

decreased survival, negative values denote increased patient survival for patients with higher median module expression. p value significance: ****p < 0.0001,

***p < 0.001, **p < 0.01, *p < 0.05, ns: not significant (p > 0.05).

(D) Kaplan-Meier plots for human LUAD patients with respect to expression of module 11 (left) or module 9 (right) associated genes. Curves are shown comparing

OS of high (red) versus low (blue) patient groups, determined based on the median module expression. p values determined by log-rank test. ****p < 0.0001,

**p < 0.01.

See also Figure S7 and Table S6.
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In this study, we define a co-accessibility module (module 9)

representing a key and previously undefined transition between

Nkx2.1 loss and EMT induction. We utilize CRISPR strategies to

show that RUNX2 drives ECM-related gene expression and is a

critical regulator of this module. Notably, remodeling of tumor-

derived ECM is considered to be an important aspect of EMT

in relation to tumor progression, promoting sequestration of can-

cer cells from immune responses and the microenvironment

(Naba et al., 2012). Therefore, we propose that activation of

RUNX2 functions in LUAD to initiate the expression of ECM pro-

teins to develop a niche that sensitizes cells for EMT. We antic-

ipate that further elucidation of this mechanism and other regu-

latory programs associated with key steps in tumor

progression will reveal epigenetic and other cellular processes

that could be targeted for intercepting the progression of human

LUAD.

Single-cell technologies provide new opportunities to better

understand primary tumor development. By improving experi-

mental and computational workflows, our study has provided

an atlas of the regulatory landscape of LUAD in a well-studied

model system. However, additional work is needed to deter-

mine which selective pressures drive individual cells to undergo

these regulatory state transitions; for example, the role of the

tumor microenvironment (Altorki et al., 2019; Azizi et al., 2018)

and the role of chromatin-modifying proteins (Rowbotham

et al., 2018; Serresi et al., 2016; Zhang et al., 2017). To this

end, we expect lineage-tracing approaches to be paired with

single-cell approaches to determine how cells navigate these

regulatory transitions toward productive or non-productive

paths of cancer (Woodworth et al., 2017). Importantly, we find

that these regulation-derived co-accessibility modules can be

used to score RNA expression from LUAD patients to provide

highly predictive markers of survival. We anticipate that addi-

tional efforts toward the characterization of direct epigenomic

biomarkers using either ATAC-seq or DNA methylation will be

valuable for the discovery of regulatory patterns across genes

or regulatory elements, providing a more robust strategy to

define cell state regulators useful for the diagnosis and treat-

ment of cancer.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

NKX2.1 Abcam Cat# ab76013; RRID:AB_1310784

RUNX2 Cell Signaling Technology Cat# 12556S;

RRID:AB_2732805

LGALS1 Cell Signaling Technology Cat# 13888S; RRID:AB_2798338

HMGA2 Cell Signaling Technology Cat# 8179S; RRID:AB_11178942

ZEB1 Abcam Cat# ab87280;

RRID:AB_2040541

RUNX1 Cell Signaling Technology Cat# 8529S;

RRID:AB_10950225

SFTPC Millipore Sigma Cat# AB3786; RRID:AB_91588

SFTPB ThermoFisher Cat# PA5-42000;

RRID:AB_2609628

BATF Sigma Aldrich Cat# SAB4500122;

RRID:AB_10745033

CAV1 Sigma Aldrich Cat# C3237;

RRID:AB_476842

HOPX Proteintech Cat# 11419-1-AP; RRID:AB_10693525

HSP90 BD Biosciences Cat# 610418;

RRID:AB_397798

RUNX3 Abcam Cat# ab135248;

RRID:AB_2848183

RFP Rockland Cat# 600-401-379;

RRID:AB_2209751

Zfp795 Novus Biologicals Cat# NBP2-20947;

RRID:AB_2848184

Fra1 ThermoFisher Cat# PA5-40361;

RRID:AB_2609389

Onecut2 Proteintech Cat# 21916-1-AP;

RRID:AB_2848180

PDPN Abcam Cat# ab109059;

RRID:AB_2848181

RUNX2 Abcam Cat# ab23981;

RRID:AB_777785

CD45 Abcam Cat# ab10558;

RRID:AB_442810

CD11B-APC eBioscience Cat# 7-0112-82;

RRID:AB_469344

TER119-APC BD Biosciences Cat# 557909;

RRID:AB_398635

CD45-APC BD Biosciences Cat# 559864;

RRID:AB_398672

CD31-APC Biolegend Cat# 102510;

RRID:AB_312917

Bacterial and Virus Strains

Ad5-Sftpc-Cre University of Iowa viral

vector core facility

Cat# VVC-Berns-1168

(Continued on next page)

ll
Article

e1 Cancer Cell 38, 1–17.e1–e13, August 10, 2020

Please cite this article in press as: LaFave et al., Epigenomic State Transitions Characterize Tumor Progression in Mouse Lung Adenocarcinoma, Can-
cer Cell (2020), https://doi.org/10.1016/j.ccell.2020.06.006



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Lung adenocarcinoma, 75 cases,

tumor and matched NAT*, unstained slide

biomax Cat# HLugA150CS02

Lung cancer progression tissue array,

including TNM, clinical stage and

pathology grade, 100 cases/100

cores, replacing LC1005

biomax Cat# LC1005a

Lung disease spectrum (pulmonary cancer

progression) tissue array,

193 cases/208 cores

biomax Cat# LC2083

Chemicals, Peptides, and Recombinant Proteins

NP-40 Surfact-Amps Detergent Solution Thermo Scientific Nalgene Cat# 28324

Thermo Scientific Pierce Sequencing Grade

Dimethylformamide

Thermo Fisher Scientific Cat# 20673

0.5M EDTA pH 8.0 Thermo Fisher Scientific Cat# 15575-020

Triton X-100 Sigma Aldrich Cat# T8787-50ML

HEPES (1M) Life Technologies Cat# 15630-080

Tween(R)20, SigmaUltra Sigma-Aldrich Cat# P7949-100ML

NuPAGE MOPS SDS Running Buffer Invitrogen Cat# NP0001

TBS Buffer 20X Liquid, 4L Amresco Cat# J640-4L

RIPA Buffer Thermo Fisher Scientific Cat# 89900

Halt Phosphatase Inhibitor Thermo Scientific Cat# PI-78420

Halt Protease Inhibitor Cocktail (100X) Thermo Scientific Cat# 78430

NuPAGE LDS Sample Buffer (4X) Life Technologies Cat# NP0007

NuPAGE Sample Reducing Agent (10X) Invitrogen Cat# NP0009

NuPAGE Transfer Buffer (20X) Life Technologies Cat# NP0006-1

Blotting-Grade Blocker Bio-Rad Cat# 170-6404

Ponceau S Sigma Aldrich Cat# P7170-1L

NuPAGE Novex 4-12% Bis-Tris

Protein Gels, 1.5mm, 10 well

Life Technologies Cat# NP0335BOX

Amersham ECL Prime Western

Blotting Detection Reagent

GE Healthcare Cat# RPN2232

Dual Endogenous Enzyme Blocking Kit Agilent Technologies Cat# S200389-2

2.5% Normal Horse Serum Blocking Solution Vector Laboratories Cat# S-2012

ImmPRESS HRP Anti-Rabbit IgG

(Peroxidase) Polymer

Vector Laboratories Cat# mp-7401

ACK lysing buffer Thermo Fisher Scientific Cat# a10492-01

DMEM with L-Glutamine VWR Cat# 10-013-CV (45000-304)

0.25% Trypsin-EDTA (1X) Phenol Red Invitrogen Cat# 25200-114

RPMI 1640 VWR Cat# 15-040-CV

Tet System Approved FBS Clontech Cat# 631106

Penicillin-Streptomycin VWR Cat# 45000-652

S-MEM Life Technologies Cat# 11380-037

RNase inhibitor Thermo Fisher Scientific Cat# N8080119

DPBS, 1X without calcium and magnesium VWR Scientific Inc Cat# 21-031-CV

10X PBS VWR Cat# AAJ67653-AP

Bovine Albumin Fraction V (7.5% solution) Thermo Fisher Scientific Cat# 15260037

Glycine VWR Cat# 97061-128

Collagenase from Clostridium histolyticum Sigma-Aldrich Cat# C9407-500MG

MgCl2 (1M) Thermo Fisher Scientific Cat# AM9530G

NaCl, 5M ThermoFisher Scientific Cat# AM9759
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Tris, Hydrochloride Santa Cruz Biotechnology Cat# sc-216106A

Sodium Dodecyl Sulfate Bio-Rad Cat# 161-0302

Sybr Fast 2X MM LC480 Kapa Biosystems Cat# KK4611

Thermo Scientific Pierce Methanol

free Formaldehyde Ampules

Thermo Fisher Scientific Cat# 28908

Proteinase K, Recombinant,

PCR grade solution

Sigma-Aldrich Cat# 3115828001

HBSS, no Calcium, no Magnesium,

no Phenol Red

Thermo Fisher Scientific Cat# 14175-079

Invitrogen DNase I Thermo Fisher Scientific Cat# 18-047-019

Collagenase, Type 4 Worthington Biochemical Cat# LS004189

FastDigest Esp3I Thermo Fisher Scientific Cat# FD0454

Puromycin Invitrogen Cat# a11138-02

Zinc formalin fixative, pH 6.25 Electron Microscopy Sciences Cat# 21516.375

Exonuclease I New England Biolabs (NEB) Cat# M0293S

Collagenase from Clostridium histolyticum Sigma-Aldrich Cat# C9407-500MG

ProLong Glass Antifade Mountant Thermo Fisher Scientific Cat# P36980

Digitonin Promega Cat# G9441

Critical Commercial Assays

Opal 4-Color Manual IHC Kit 50 slides Akoya Biosciences Cat# NEL810001KT

DAB Peroxidase Substrate Kit Vector Labs Cat# SK-4100

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs (NEB) Cat# M0541L

Pierce BCA Protein Assay Kit Thermo Fisher – Pierce Cat# 23227

KAPA Library Quant for Illumina

Sequencing Platforms

Kapa Biosystems Cat# KK4824

MinElute PCR Purification Kit Qiagen Cat# 28006

Lung Dissociation Kit, mouse Miltenyi Biotec Cat# NC0315167

RNeasy Plus Mini Kit Qiagen Cat# 74134

High-Capacity cDNA reverse transcription kit Thermo Fisher Scientific Cat# 4368814

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q32854

QIAGEN Plasmid Plus Midi Kit (25) Qiagen Cat# 12943

QIAquick Gel Extraction Kit (250) Qiagen Cat# 28706

SMARTer ThruPLEX DNA-Seq Kit - 24 Rxns Takara Bio Cat# R400674

ECM Cell Adhesion Array Kit, colorimetric Millipore Sigma Cat# ECM540

CD45 microbeads mouse Miltenyi Biotec Cat# 130-052-301

Mouse L308 Array, Membrane RayBiotech Cat# AAM-BLM-1A-2

Nextera DNA Library Preparation Kit Illumina Cat# FC-121-1030

NextSeq 500/550 High Output Kit v2 Illumina Cat# FC-404-2002

NextSeq Illumina Cat# FC-404-2005

SureCell ATAC-Seq Library Preparation Kit Bio-Rad Cat# 17004620

Agencourt AMPure XP Beckman Coulter Cat# A63880

SureCell ddSEQ Index Kit Bio-Rad Cat# 12009360

Agilent High Sensitivity DNA Kit Agilent Cat# 5067-4626

TC20 Cell Counting Kit, with Trypan Blue Bio-Rad Cat# 1450003

Deposited Data

ScATAC-seq data This manuscript Super series: GSE145194; GSE134812

Early time point single cell data This manuscript Super series: GSE145194; GSE145192

Bulk-ATACseq This manuscript GSE151403

Visualization of UMAP scATAC-seq This manuscript https://buenrostrolab.

shinyapps.io/lungATAC/
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

UCSC genome browser tracks

for normal cells

This manuscript http://genome.ucsc.edu/s/

lmlafave/normal_lung_scATAC

UCSC genome browser tracks

for tumor modules

This manuscript http://genome.ucsc.edu/s/

lmlafave/KPT_modules

Experimental Models: Cell Lines

860T3 KP cell line This manuscript N/A

1183T3 KP cell line This manuscript N/A

853T2 KP cell line This manuscript N/A

860T1 KP cell line This manuscript N/A

1183T4 KP cell line This manuscript N/A

932T2 KP cell line This manuscript N/A

932T3 KP cell line This manuscript N/A

932LN KP cell line This manuscript N/A

779T1 KP cell line This manuscript N/A

779T2 KP cell line This manuscript N/A

779LN KP cell line This manuscript N/A

Experimental Models: Organisms/Strains

KP mouse Jackson et al.,

2001, 2005

stock 008179, stock 008462

Tomato mouse (Ai9) Jackson Labs stock 007905

B6129SF1/J Jackson Labs stock 101043

Oligonucleotides

Genotyping primers Table S7 N/A

RUNX2 control g1f:

CACCGGGCCACGAGTTCGAGATCGA

This manuscript N/A

RUNX2 control g1r:

AAACTCGATCTCGAACTCGTGGCCC

This manuscript N/A

RUNX2 OE sg1a: CACCGGAGGAGGAAATCGA This manuscript N/A

RUNX2 OE sg1b: AAACTCGATTTCCTCCTCC This manuscript N/A

RUNX2 OE sg2a: CACCGGGCGGAGTCTGCTG This manuscript N/A

RUNX2 OE sg2b: AAACCAGCAGACTCCGCCC This manuscript N/A

RUNX1 KO sg1a:

CACCGAGGAGTACCTTGAAAGCGAT

This manuscript N/A

RUNX1 KO sg1b:

AAACATCGCTTTCAAGGTACTCCTC

This manuscript N/A

RUNX1 KO sg4a:

CACCGTAGCGAGATTCAACGACCTC

This manuscript N/A

RUNX1 KO sg4b:

AAACGAGGTCGTTGAATCTCGCTAC

This manuscript N/A

RUNX2 KO sg3a:

CACCGTGCGGACCAGTTCGGCCGGG

This manuscript NA

RUNX2 KO sg3b:

AAACCCCGGCCGAACTGGTCCGCAC

This manuscript N/A

RUNX2 KO sg4a:

CACCGGCCCTCGGAGAGGTACCAGA

This manuscript N/A

RUNX2 KO sg4b:

AAACTCTGGTACCTCTCCGAGGGCC

This manuscript N/A

RUNX3 KO sg1a:

CACCGGGACGTGCTGGCCGACCACG

This manuscript N/A

RUNX3 KO sg1b:

AAACCGTGGTCGGCCAGCACGTCCC

This manuscript N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tyler

Jacks (tjacks@mit.edu).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

lentiCRISPR-V2-puro Joung et al., 2017 Addgene #98290

Lenti-Sam-puro This manuscript N/A

Lenti-Cas9-blast Sanjana et al., 2014 Addgene #52962

Software and Algorithms

Aiforia (NSCLC_v25 algorithm) This manuscript https://www.aiforia.com/

R (v3.5.3) R Core Team, 2019 https://www.R-project.org

chromVAR R package (v0.2.0) Schep et al., 2017 https://github.com/

GreenleafLab/chromVAR

uwot R package (v0.1.4) McInnes et al., 2018 https://github.com/

jlmelville/uwot

survival R package (2.41-3) Therneau and

Grambsch, 2000

https://cran.r-project.org/

web/packages/survival/index.html

GSEA (v3.0) Subramanian et al., 2005 https://www.gsea-msigdb.

org/gsea/index.jsp

ImageJ (v1.52k) Schneider, et al., 2012 https://imagej.net/

ImageJ Protein Array Analyzer (v1.1.c) Carpentier, 2010 https://imagej.net/macros/

toolsets/Protein%20Array%20Analyzer.txt

FlowJo (v10.6.2) N/A www.flowjo.com

CaseViewer (v2.2.1) N/A https://www.3dhistech.com

MATLAB (v2019a) Higham and

Higham, 2016

https://www.mathworks.com

Ilastik (v1.3.3) Berg et al., 2019 https://www.ilastik.org

MSigDB (v7.0) Liberzon et al., 2015 https://www.gsea-msigdb.org/

gsea/msigdb/index.jsp

bowtie2 (v2.3.3.1) Langmead and

Salzberg, 2012

http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

MACS2 (v2.1.2) Zhang et al., 2008 https://github.com/taoliu/MACS/

samtools (v1.9) Li et al., 2009 http://samtools.sourceforge.net

Picard toolkit (2.14.1-SNAPSHOT) N/A http://broadinstitute.github.io/picard

biomaRt (v2.34) Durinck et al., 2005 https://bioconductor.org/

packages/release/bioc/

html/biomaRt.html

ggfortify R package (v0.4.10) Tang et al., 2016 https://github.com/sinhrks/ggfortify

BAP (v0.5.9i) Lareau et al., 2019 https://github.com/caleblareau/bap

BWA (v0.7.15) Li, 2013 https://github.com/lh3/bwa

QuPath (0.1.2) Bankhead et al., 2017 https://qupath.github.io

Code generated for this manuscript This study https://github.com/buenrostrolab/

lungATAC_analysis_code
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Data and Code Availability
The accession numbers for the scATAC-seq and bulk ATAC-seq reported in this paper are GEO: GSE134812, GEO: GSE145192, and

GEO: GSE151403. The raw single-cell ATAC-sequencing files and processed data files generated in this study are available in GEO

under the super series GSE145194. Single-cell combinatorial indexing data is available under GSE134812 and ETP data is available

under GSE145192. Bulk ATAC-sequencing raw and processed files are available under accession GSE151403. The R Shiny-based

web application for data visualization is accessible here: https://buenrostrolab.shinyapps.io/lungATAC/

UCSC genome browser tracks associated with this study are made available with the following weblinks:

Normal cells cluster: http://genome.ucsc.edu/s/lmlafave/normal_lung_scATAC.

KPT modules: http://genome.ucsc.edu/s/lmlafave/KPT_modules.

Code used for the analysis of scATAC-seq data in this study is available on Github (https://github.com/buenrostrolab/

lungATAC_analysis_code).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All mouse experiments described in this study were approved by theMassachusetts Institute of Technology Institutional Animal Care

and Use Committee (IACUC) (institutional animal welfare assurance no. A-3125-01). LSL-KrasG12D/+; Trp53fl/fl mice have been

described previously (Jackson et al., 2001, 2005). Mice were crossed with the tdTomato Ai9 reporter allele from Jackson laboratory

(stock 007905) to generate LSL-KrasG12D/+; Trp53fl/fl;Rosa26tom/+ mice. All mice were maintained on amixed C57BL/6-129/Sv back-

ground. Mice with appropriate genotypes were aged 8-12 weeks and randomly selected for tumor initiation studies. Mice were in-

fected intratracheally with Adenoviral SPC-Cre (Ad5-SPC-Cre) virus (Iowa) as described with viral titers 1x108 or 2.5x107 TTU to allow

for the development ofmetastases (Sutherland et al., 2011). Normal lungswere collected fromwild-typemice from amixedC57BL/6-

129/Sv background in mice aged to 6-8 weeks. Mice of both sexes were used for experiments, but predominantly male mice were

profiled for single-cell analyses.

Isolation of Normal Lung and Primary Lung Adenocarcinoma Cells from Mice
LUAD cells were isolated frommice as described previously, with a fewmodifications (Tammela et al., 2017). Genotyping primers are

listed in Table S7. Briefly, KrasG12D/+; Trp53-/-; Rosa26tom/+ mice were euthanized 30-35 weeks after tumor initiation. Whole tumor

burdened lungs or individually plucked tumors were dissociated with fine scissors and then proteolytic digestion was performed us-

ing the Lung Dissociation kit (Miltenyi Biotech) following the manufacturer’s instructions. Dissociated cells were then incubated at

37�C for 30 minutes with rotation, then filtered using a 100 mm strainer. Red blood cells were lysed using ACK buffer (Thermo Sci-

entific) and stained with APC-conjugated CD45 (BD, 559864), CD11b (eBioscience 17-0112-82), CD31 (Biolegend, 102510),

Ter119 (BD, 557909), and DAPI (Sigma-Aldrich). FACS of immuno-stained primary cells was performed using a FACSAria sorter

(BD) to isolate tdTomato+; DAPI-; APC- tumor cells for sciATAC-seq. Normal lungs from mice were processed similarly to tumor-

burdened tissue. CD45 depletion was conducted using CD45 microbeads (Miltenyi Biotec) following ACK Lysis.

For early time-point analyses, mice were euthanized 8 weeks following tumor initiation in an isoflurane chamber. Lungs were in-

flated by injecting digestion buffer (Adv DMEM/F12, 5uM HEPES, DNase, 1mg/mL Collagenase, 0.36mM CaCl2) into the trachea.

Lungs were dissociated with fine scissors and proteolytic digestion was performed using the lung digestion buffer. Dissociated cells

were incubated at 37�C for 1 hour with rotation. Cells were washed in 1x PBS and red blood cells were lysed using ACK lysis buffer

(Thermo Scientific) for 3 minutes at room temperature. Cells were filtered using a 100 mm strainer and stained with DAPI (Sigma-Al-

drich). FACS was performed using a FACSAria sorter (BD) to isolate tdTomato+ cells for single-cell droplet ATAC-seq.

Cell Culture and Cell Line Generation
Individual tumors were dissected, digested in an enzymatic buffer (1X HBSS, 5mM HEPES, DNaseI, Collagenase IV), and incubated

with rotation at 37�C for 30 minutes. The enzymatic buffer was quenched with DMEM and spun at 1000 rpm. Cell pellets were resus-

pended in DMEM and plated in 6-well plates to allow for attachment. Cell lines were genotyped for Kras, p53, and tomato after 5

passages in culture. The cell lines used in this study were established from mouse LUAD over the course of the study. All lines

were grown in DMEM, 10% FBS, and 1% pen-strep. KP cell lines have not been authenticated because the cell lines are not found

in established databases. The KP cell lines were tested for mycoplasma and found to be negative. GM12878 cells were grown in

DMEM, 10% FBS, and 1% pen-strep and 3T3 cells were grown in RPMI 1640, 10% FBS, and 1% pen-strep. GM12878 cells

were authenticated by STR Profiling Service from ATCC.

METHOD DETAILS

Lentiviral Vectors and sgRNA Cloning for CRISPR and CRISPRa
For CRISPR knockout experiments, guides were cloned into the lentiCRISPR-V2 lentiviral vector (Joung et al., 2017). The lenti-

CRISPR-V2 vector was digested with Fast Digest EspI and ligated with EspI-compatible annealed oligonucleotides for sgRNAs.

KP cell lines were infected with constructs containing guides and selected with puromycin after 48 hours. After puromycin selection,

guide performance was tested by western blotting. For CRISPR activation (CRISPRa) experiments, the Lenti-Sam-puro construct
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was used (developed in the Jacks lab), an adaption of the previously published Lenti-Sam activation construct (Pentinmikko et al.,

2019). EspI-compatible cloning was completed and cells were infected with constructs containing guides based on CRISPRa pre-

diction (Horlbeck et al., 2016). Truncated guides of 15 bpwere cloned into a lentiviral based expression construct which also encodes

for a transcriptional activation complex (MS2-P65-HSF1) and a puromycin selection cassette. Non-metastatic and metastatic cell

lines were engineered to express Cas9 following stable selection of a Cas9-Blast construct (Sanjana et al., 2014).

Western Blots
Cells were lysed in RIPA buffer supplemented with protease inhibitors (HaltTM, Thermo Scientific) and phosphatase inhibitors

(Thermo Scientific) and incubated at 4�C for 20 minutes and were then cleared by spinning maximum speed for 10 minutes. The pro-

tein concentration of lysates was determined using the Pierce BCA Protein Assay (Thermo Scientific). Total protein concentrations of

40 mg were run on NuPage 4-12% Bis-Tris gradient gels (Thermo Scientific) by SDS-PAGE and transferred to nitrocellulose mem-

branes. All western blots were imaged with a BioRad ChemiDoc MP imager. The following antibodies were used for immunoblotting:

anti-Hsp90 (1:10000); BD Biosciences 610418, anti-Runx1 (1:1000), Cell Signaling Technology, 8529S, anti-Runx2 (1:1000), Cell

Signaling Technology, 12556S, and anti-Runx3 (1:1000) Abcam, ab23981.

Immunohistochemistry
Individual lung tumors were fixed overnight in zinc formalin and embedded in paraffin. Tissue sections were dewaxed using a Thermo

Autostainer 360. All sections from the same tumor regions were serially sectioned. Slides were then stained using antibodies against

Nkx2.1, Abcam, ab76013 1:1000; Hmga2, Cell Signaling Technology, 8179S, 1:1000; Onecut2, Proteintech, 21916-1-AP, 1:500;

Runx1, Cell Signaling Technology, 8529S, 1:500; Runx2, Cell signaling,12556S, 1:1000; Cav1, Sigma, C3237, 1:1000; Sftpb, Ther-

moFisher, PA5-42000, 1:200; Zeb1, Abcam, ab87280, 1:500; BATF, Sigma, SAB4500122, 1:100; Zfp95, Novus Biologicals, NBP2-

20947, 1:200; RFP, Rockland, 600-401-379, 1:400; Fra1, ThermoFisher, PA5-40361, 1:100; CD45, Abcam, ab10558, 1:1000, Cell

signaling technology 12556S, 1:1500; Sftpc, Millipore sigma AB3786, 1:5000; LGALS1, Cell Signaling Technology, 1388S, 1:1000.

Slides were also counterstained with haematoxylin.

Opal Four-Color Anti-rabbit Manual Immunohistochemistry
Lung tissue was fixed overnight in zinc formalin and embedded in paraffin. Tissue sections were dewaxed using a Thermo Austos-

tainer 360 and then fixed in 10% neutral buffered formalin for 20 minutes. Slides were stained sequentially using antibodies against

Nkx2.1, Abcam, ab76013, 1:250 (in Perkin Elmer Antibody Diluent/Block); Runx2, Cell Signaling Technology 12556S, 1:250; Pdpn,

Abcam, ab109059, 1:250; Hopx, Proteintech 11419-1-AP, 1:100; SPC, Millipore Sigma AB3786, 1:400; Lgals1, Cell Signaling Tech-

nology 13888S, 1:100. After detection with an Opal fluorophore (1:100 in Perkin Elmer 1X Amplification Diluent), the primary and sec-

ondary antibodies were stripped using a pressure cooker, followed by another round of staining. Slides were counterstained with

DAPI and coverslipped using ProLong Diamond AntifadeMountant (Thermofisher). Slides were scanned using Pannoramic 250 Flash

III at 20X or 40X.

Human Lung Adenocarcinoma Arrays and Human Protein Atlas
The human lung adenocarcinoma microarrays used were LC1005A and LC2083 (Biomax) and were stained as described above in

immunohistochemistry. Representative tissue sections from patients on the Human Protein Atlas (http://proteinatlas.org) were

also included for RUNX1 and RUNX2 (Uhlén et al., 2015). Images can be found online at the following links (RUNX1; 2438; https://

images.proteinatlas.org/4176/12280_B_1_1.jpg), (RUNX1; 2403; https://images.proteinatlas.org/4176/12280_B_3_4.jpg), (RUNX2;

4883; https://images.proteinatlas.org/22040/140406_B_1_8.jpg), (RUNX2; 4873; https://images.proteinatlas.org/22040/

140406_B_2_4.jpg), (RUNX3; 4866; https://images.proteinatlas.org/25416/151928_B_1_2.jpg), (RUNX3; 1327; https://images.

proteinatlas.org/25416/151928_B_1_4.jpg) available at v19.proteinatlas.org.

Quantitative PCR
RNA was isolated from cells using the RNeasy Plus kit (Qiagen) as specified by the manufacturer’s instructions. cDNA was synthe-

sized from 1 mg of RNA using the High-Capacity cDNA reverse transcription kit (Thermo Scientific) and RNase inhibitor (Thermo Sci-

entific). qPCR experiments were performed in triplicate with SYBR fast master mix (Kapa Biosystems) on a Roche Lightcycler 480

qPCR machine. Expression was normalized to Actb. All experiments were performed with three replicates.

Bulk-ATAC
For bulk-ATAC, the ATAC-seq protocol was performed as previously described (Buenrostro et al., 2013; Ludwig et al., 2019). Briefly,

25,000-50,000 cells were trypsinized andwashed twice in PBS. Pelleted cells were then directly transposed using an all-in-one trans-

position buffer (Tris pH 7.5, MgCl2, DMF 5%, PBS 0.3X, NP-40 0.1%, Illumina Tn5 1X, ddH20 to 50 uL). The transposition reaction

was completed with thermomixing at 37�C for 30minutes at 300 rpmon a thermoshaker. Transposed DNAwas purifiedwithMinElute

column clean-up (Qiagen), then minimally amplified for sequencing as previously described (Buenrostro et al., 2015b). Prepared li-

braries were purified with MinElute column clean-up (Qiagen) and digested with ExoI (NEB). Libraries were quantified with a Qubit

dsDNA HS Assay kit (Invitrogen) and sequenced on the Next-seq platform (Illumina) using a 75-cycle kit. Bulk ATAC-seq data
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was processed as previously described (Buenrostro et al., 2015a). Briefly, reads were trimmed and aligned using Bowtie 2 (v2.3.3.1)

and the same peakset was utilized for single-cell ATAC sequencing experiments.

Extracellular Secreted Protein Array
Extracellular protein antibody arrays were conducted using an L-308 mouse protein array (RayBiotech) following manufacturer in-

structions. Briefly, cells were seeded at a density of 1 x 106 in DMEM with 10% FCS for 48 hours. The media was then replaced

with DMEM containing 0.2% FCS and collected after 48 hours of incubation. Supernatants were centrifuged at 1000 x g for 10 mi-

nutes and dialyzed overnight in dialysis buffer (2.6 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, and 8.1 mM Na2HPO4, pH = 8) using

dialysis vials (RayBiotech). The dialyzed media was then quantified and protein was labeled with biotin based on protein concentra-

tion. Excess biotin was removed from the media via spin filtration. Filtered biotin-labeled protein was incubated on arrays overnight.

The arrays were then blocked and incubated with HRP-Streptavidin. Antibody arrays were imaged with the BioRad ChemiDoc MP

imager and quantified using the protein microarray plugin on ImageJ (v1.52k) (Carpentier, 2010; Schneider et al., 2012) with two rep-

licates. Log2fold change was calculated for each spot on the array (in duplicate) and standard deviation across duplicate spots.

Aiforia
Histological quantification ofmouse lung tumor gradewas performed by an automated deep neural network (unpublished) developed

by Aiforia Technologies in collaboration with the Jacks lab, and in consultation with veterinarian pathologist Dr. Roderick Bronson.

We trained a convolutional neural network (CNN) for semantic multi-class segmentation using the Aiforia(R) platform. The CNN was

trained to classify and detect lung parenchyma, NSCLC tumors, and NSCLC tumor grades (grade 1-4). For supervised training, we

used selected areas from 93 hematoxylin and eosin stained slides. The algorithm performed consistently and with high correlation

with human graders across multiple validation datasets independent of the training dataset. For grade calling, the NSCLC_v25 algo-

rithm was used.

Tail Vein Injections
B6129SF1/J (Jackson lab, stock 101043) male mice were injected with between 100K-150K cells intravenously via the tail vein.

Experiment in triplicate with control guides and RUNX2 guides. Mice were euthanized at experiment endpoint (3-4 weeks following

cell line injection) and tumor burden was determined by organ weight and immunohistochemistry. Experiment was replicated three

times with one replicate presented. Tumor volume was quantified using percentage of total tumor tissue area divided by normal tis-

sue area.

Methods for sciATAC-seq
sciATAC-seq Sample Processing

Fixation: Normal or tumor-derived lung cells were transferred to centrifuge tubes that were pre-coated with 7.5% BSA. Cells were

centrifuged at 300g for 5 min, washed once in PBS, and resuspended to 1 million cells/ml. Cells were then fixed with 0.1% formal-

dehyde and incubated at room temperature for 5 min. The fixation was stopped by adding glycine to the final concentration of

125 mM. The sample was incubated at room temperature for 5 min and then centrifuged at 500g for 5 min to move supernatant.

The cell pellet was washed twice with 1 ml of PBS and centrifuged at 500g for 5 min between washes. The cells were resuspended

to 1-2 million cells/ml in PBS.

Transposition: All the oligonucleotides used in this protocol can be found in Table S1. The 100 mM Ad1 or Ad2 oligos that have

unique barcodes were annealed with an equal amount of 100 mM blocked ME-compliment oligo by heating at 85�C for 2 min and

slowly cooling down to 20�C at a ramp rate of -1�C/min. The annealed oligos were mixed with an equal volume of cold glycerol

and stored at -80�C until use. In-house produced Tn5 (Picelli et al., 2014), was mixed with an equal volume of dilution buffer

(50 mMTris, 100mMNaCl, 0.1 mMEDTA, 1 mMDTT, 0.1%NP-40, and 50% glycerol). The diluted Tn5 was thenmixed with an equal

volume of annealed oligos and incubated at room temperature for 30 min before transposition.

Fixed cells (1 ml) and 7 ml of 1.25x transposition buffer (41.25 mM Tris-acetate, 82.5 mM K-acetate, 12.5 mM Mg-acetate, 20%

DMF, 0.125% NP-40, 0.5% Protease Inhibitor Cocktail) were distributed onto a 96-well plate. The plate was incubated at room tem-

perature for 10 min. The assembled Tn5 was diluted with an equal volume of 1.25x transposition buffer. 1 ml of diluted Tn5 containing

Ad1 oligo and 1 ml of diluted Tn5 containing Ad2 oligo were distributed onto a 96-well plate. The transposition was carried out at 37�C
for 30min with shaking at 300 rpm. The reaction was stopped by adding 1 ml of 0.5M EDTA and incubated at 37�C for 15minutes with

gentle shaking at 300 rpm. All the cells were then pooled and 38.4 ml of 1 MMgCl2 was added to the pooled sample. The sample was

centrifuged at 500g for 2 min and then washed with 1 ml of EB buffer (Qiagen) with 0.1% Triton X-100. The sample was resuspended

to 0.5 ml of EB buffer with 0.1% Triton X-100. The sample was passed through a 50 mm filter to remove clumps and diluted to 6.7 or

13.3 cell/ml with the same buffer.

Reverse crosslinking and PCR: 2 ml of the sample was re-distributed onto another 96-well plate with 1.5 ml sample on each well.

2.5 ml of 2x reverse crosslinking buffer (100 mM Tris pH 8.0, 400 mMNaCl, 2 mM EDTA pH 8.0, 2% SDS, and 40 mg/ml proteinase K),

0.5 ml of 10 mMP2oligo, and 0.5 ml of 10 mMP1oligowere added to eachwell. The plate was incubated at 55�C for 16 hours for reverse

crosslinking. 5 ml of 10% Tween-20 was then added to quench SDS. 12.5 ml 2x NEBnext PCR mix and 2.5 ml H2O were added to

each well.
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The PCR reaction was carried out at the following conditions: 72�C for 5 min (extension), 98�C for 5 min, and then thermocycling at

98�C for 10 s, 70�C for 30 s and 72�C for 1 min. After thermocycling for 5 cycles, we took a 5 ml sample from a few randomly selected

wells and added 10 ml of PCR cocktail with 0.6x SYBRgreen. The 15 ml reactionswere amplified to saturation to determine the number

of cycles required for the remaining samples on the plate. Libraries were amplified for 13-14 cycles in total. Libraries were pooled and

purified using Qiagen MinElute PCR purification column. The libraries were quantified using KAPA library quantification kit (Buenros-

tro et al., 2013). Libraries were sequenced on the Next-seq platform (Illumina) using a 150-cycle kit (Read 1: 47 cycles, Index 1: 36

cycles, Index 2: 36 cycles, Read 2: 47 cycles).

Read Alignment and Pre-processing

Base calls were converted to fastq format using bcl2fastq. Raw sequencing reads were trimmed using custom python scripts to re-

move adapter sequences. The reads were aligned to hg19 or mm10 genome using Bowtie2 (Langmead and Salzberg, 2012) with

maximum fragment length set to 2 kb, and all other default settings (bowtie2 -X2000 –rg-id). The data were demultiplexed toler-

ating one mismatched base within barcodes. Mitochondrial, discordant and low quality reads were removed using SAMtools v1.9 (Li

et al., 2009) (samtools view -b -q 30 -f 0x2). Duplicate sequences were removed using the picard toolkit (2.14.1-SNAPSHOT)

(http://broadinstitute.github.io/picard/).

Peak Calling

sciATAC-seq profiles for all cells were first merged into a single alignment (.bam) file and used as input for peak calling with MACS

v2.1.2 (MACS2) (Zhang et al., 2008). All default options were used, with the following flags explicitly set: –nomodel, –nolambda,

–keep-dup all, –call-summits. This returned a list of single base pair peak summits with associated significance scores (cor-

responding to log FDR q-value fromMACS2). Only peak summits with FDR q < 0.01 were retained. Next, a previously described iter-

ative filtering approach was implemented to obtain a list of significant, non-overlapping fixed-width peak windows (Lareau et al.,

2019). Briefly, the called peak summits were first padded with 150 base pairs (bp) at either end to generate evenly sized 301 bp win-

dow peak regions. Peaks were then sorted in decreasing order of their significance scores. Keeping the most significant peak, over-

lapping peak windows that had lower significance scores were identified and then removed. This was repeated for the next most

significant peak window. Through this iterative process, lower significance overlapping peak regions were filtered out, resulting in

285,956 disjoint 301 bp peak windows.

sciATAC-seq Counts Generation and QC

Using the generated peak region list, the number of reads overlapping a given peak window (n = 285,956 peaks) was determined for

each unique cell barcode tag. This generated a peak by cell counts matrix corresponding to ATAC reads in peaks for each cell pro-

filed. Only cells having FRIP R 0.4 and a minimum of 2000 unique nuclear reads per cell were retained for downstream analyses,

resulting in a total of 17,274 cells.

ETP Single-Cell Droplet ATAC-seq and Analysis

ETP cells were profiled using the Whole Cell Tagmentation protocol as described previously (Lareau et al., 2019) using the SureCell

ATAC-Seq Library Prep Kit (17004620, Bio-Rad). Briefly, cells were washed with 1mL 1x PBS + 0.1% BSA and resuspended in cold

Whole-Cell Tagmentation Mix (ATAC Tagmentation Buffer, ATAC Tagmentation Enzyme, 0.5% Digitonin, 5% Tween-20, nuclease-

free water). The cell suspension was incubated at 37�C for 30minutes with shaking. Barcode SuspensionMix and Enzyme Suspension

Mix were prepared and kept on ice for droplet encapsulation. Tagmented nuclei were resuspended in the Enzyme Suspension Mix.

Droplet encapsulation was performed using the Bio-Rad ddSEQ Single-Cell isolator. The encapsulated samples were transferred to a

chilled 96-well plate for barcoding and amplification. The incubation protocol was as follows: 37�C for 30minutes, 85�C for 10minutes,

72�C for 5 minutes, 98�C for 30 seconds, eight cycles of 98�C for 10 seconds, 55�C for 30 seconds, 72�C for 60 seconds, then 72�C for

5minutes. Emulsionswerebrokenwith the Droplet Disruptor and fragmentswerepurified using AMPureXPbeads. Barcoded fragments

wereamplifiedusing theATACPCRSupermixandATACPrimerMixwith the following incubations:98�Cfor 30seconds,7cyclesof98�C
for 10 seconds, 55�C for 30 seconds, 72�C for 60 seconds, then 72�C for 5minutes. PCRproductswere cleaned up a second time using

AMPure XP beads. scATAC-seq paired-end reads were first debarcoded using the bap-barcode utility as part of the bead-based

ATAC-seq processing (BAP) pipeline (v0.5.9i; https://github.com/caleblareau/bap), allowing for 1 base mismatch. The resulting

sequencing read files were aligned to the mm10mouse reference genome assembly using BWA v0.7.15, and the corresponding align-

ment files processed to handle droplet beadmultipletmerging usingbap, with the following parameter specifications:-rmm10-bf500

-btXB. The samepeakset derivedusing themouse lungsciATAC-seqdatawasused togeneratea reads inpeakscountsmatrix for ETP

cells. Only cells with FRIPR 0.4, unique nuclear fragments > 2,000 and a sequence duplication rate of at least 40%were retained (n =

4,610 cells).

SciATAC-seq Data Analysis and Visualization
TF Motif and k-mer Scoring in Single Cells Using chromVAR

TF motif and sequence k-mer accessibility scores were computed for single cells using chromVAR (Schep et al., 2017). The filtered

accessibility counts matrix of peaks (n = 285,956) by cells (n = 17,274) was used as input data, along with binary overlap annotation

matrices of either peaks by TFmotifs (for TF motif scores) pertaining to a curated list of mm10 cisBPmotifs (n = 797) or all possible 6-

mers (n = 2,080; for k-mer scores) as previously described (Schep et al., 2017). Background peaks were sampled (n = 250 iterations)

to adjust for GC bias and overall accessibility across all cells for each peak, and were used to compute motif and k-mer accessibility

deviation Z-scores using the computeDeviations function in chromVAR (v0.2.0).
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Single-Cell Clustering and Visualization

The matrix of k-mer accessibility deviation Z-scores was first column-scaled and centered (using the scale function in R v.3.5.3) (R

Core Team, 2019), and run through a principal component analysis (PCA) dimensionality reduction. The Uniform Manifold Approx-

imation and Projection (UMAP) algorithm (McInnes et al., 2018) was then applied to project single cells in two dimensions using the

k-mer PC scores for the first 20 PCs (implemented using the uwot package (v0.1.4) in R with the following non-default clustering

parameters: n_neighbors = 20, min_dist = 0.4, metric = ’’cosine’’). To further cluster the normal lung cellular populations

into distinct subgroups, we applied the same PCA and UMAP clustering strategy, using only the k-mer accessibility Z-scores for

normal lung cells (n = 3,604 cells). The Louvain method for network community detection (Blondel et al., 2008) was then applied

on a k-nearest neighbor (k-NN) graph built using the normal cell PC scores (k = 50), identifying 12 distinct normal cell clusters that

were then annotated and visualized in the original UMAP space (see Table S1).

Early Time Point (ETP) Single-Cell Projection

Projection of ETP cells was performed using k-mer accessibility Z-scores derived from scATAC-seq data generated for 8 weeks tu-

mor ETP cells, and the k-mer PC coefficients from the PCA run of all the lung cells used to produce the original UMAP clustering

(Figure 2A). First, the matrix of ETP cell k-mer Z-scores (n = 2,080 k-mers and 4,610 cells) was multiplied with the PC coefficients

matrix (2,080 k-mers x 20 PCs) to get a cells by PC scores matrix. We then projected the ETP cell PC scores onto the UMAP space

of all lung cells using the umap_transform function in the uwot package in R.

Chromatin Module Definitions and Single-Cell Scoring

Modules or groups of peaks exhibiting similar changes in accessibility with respect to TF motif deviation across tumor and metastatic

cells (n = 17,274)were definedas follows. First, TFswere first grouped into ‘bags’ based on theirmotif sequence correlation levels (Pear-

son r cut-off = 0.7), with bag leaders determinedas the TFwith themost variable accessibility Z-score (fromchromVAR)within a given TF

bag. We then applied a jackstraw PCA (Chung and Storey, 2015) approach to filter for only those TFs whose motif accessibility signifi-

cantly contribute to the systematic variation captured by PCA (as implemented using the JackStraw function in the Seurat package

(Satija et al., 2015) for gene filtering). JackstrawPC coefficients were determinedby randomly sampling 20%of the TF bag leadermotifs

and running PCA on their chromVAR deviation Z-scores, with motif accessibility scores independently permuted across all tumor and

metastatic cells (i.e. any association of the feature sets and cells is distorted), keeping only the first 20 PCs. Doing this for n = 1000 iter-

ations, permutation p values for each TFmotif and each PC are determined by comparing PC coefficients from running PCA on the true

unaltered dataset with the jackstrawPCAcoefficients. Only TFmotifswith p value < 0.1 among the first 10 PCswere kept, resulting in 67

TFs.Next, for eachof theseTFmotifs, cellswerebinnedaseithermotif-‘‘high’’ or ‘‘low’’basedonwhether theirmotif scoreswereaboveor

below themedianmotif accessibilityZ-score for all tumorcells, respectively.Countsofsingle-cell reads inpeaks,normalizedby themean

counts per cell across all peaks, were then used to test for differential accessibility between the high vs low cells for each peak using a

two-sampleStudent’s t-test. Peaks thatwere significantly differentially accessible at FDRq<10-6 for eachTFwere then retained to yield

a set of 74,732 uniquepeaks. Log-2 fold-changeof themeanaccessibility for eachof these peaks between the high and lowgroupswas

then computed for each motif. The resulting matrix of fold-changes of peaks (rows) across motifs (columns) was converted to a k-NN

graph (k = 30) which was used to cluster the peaks using the Louvain method. This yielded 11 unique peak clusters (which we refer to

as ‘modules’),whichwereusedaspeakannotations forchromVAR(seeTableS3),alongwithscATAC-seqreads inpeakscounts toscore

all single cells based on their enriched chromatin accessibility within module-specific peaks. For tracks, cells were defined as ‘module-

high’ if their module accessibility score was greater than 2 standard deviations above the mean module score across all cells.

Gene Activity Scoring in Single Cells

Single-cell chromatin accessibility signal around gene TSSs was used to compute gene scores. TSS annotation pertaining to the Re-

fSeq mm10 genome build (http://genome-euro.ucsc.edu/cgi-bin/hgTables) was obtained and processed into single base-pair,

strand-aware coordinates (n = 35,856 genes). Scores were then computed per gene TSS as previously described, with slight mod-

ifications (Lareau et al., 2019). Briefly, an exponential decay function with a half-life of 1 kb was used to weight aligned sciATAC-seq

reads based on the distance of aligned fragment centers to the TSS for a given gene. The total distance considered was set to

4,606 bp on either side of the TSS, determined to be the distance at which the decay weight equals 1%. These weights are then

summed per cell for all fragments overlapping the 9,212 bpwindow around the TSS, to give the gene score for each cell. The equation

below summarizes how gene score gaX for gene a in cell X is computed:

N: Total number of aligned fragments overlapping the TSS window for cell X

di: Distance (in bp) of the ith fragment center to the TSS

wi: Weight of ith fragment

gaX =
XN

i =1

wi;wi = e�di=1000

Single-cell gene scores were then normalized to themean gene score per cell, and used for downstream analysis. For visualization

of gene scores in single cells (UMAPplots), normalized gene scores for cells were smoothed based on their nearest-neighbors (k= 10)

defined using the k-mer PC scores for all cells being clustered.

Gene-Module Associations and Gene Set Enrichment Analyses

For each module (k = 1 to 11), the correlation coefficient (Pearson r) was computed between their module accessibility Z-scores and

the gene scores for all TSSs (n = 35,856 genes) for all tumor and metastatic cells (n = 13,670). For module-wise gene set enrichment
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analyses, these gene-module correlations were first ranked based on the correlation coefficient per module. Mouse gene symbols

were then lifted over to human HGNC symbols using the biomaRt R package (v2.34) specifying the ensembl mart database. The re-

sulting ranked lists of mapped human gene identifiers and their correlation values (see Table S3) were then used to perform a pre-

ranked gene set enrichment analysis per module using GSEA (Subramanian et al., 2005) against hallmark (h), canonical pathway

(c2cp), chemical and genetic perturbation (c2cgp), and oncogenic (c6) annotated gene sets included in themolecular signature data-

base (MSigDB v7.0) (Liberzon et al., 2015). To derive module-specific gene signatures, each gene was assigned to the module with

the largest Pearson correlation coefficient. The top 200 genes for eachmodule were retained (n = 2,200 genes), and were mapped to

their human orthologs using biomaRt as described above (see Table S6). These mappedmodule gene signatures were then used for

survival analysis, and for interrogation against RUNX TF perturbation effects (see below).

TF Activator and Repressor Analysis

To calculate correlation between TF motif scores and TF gene scores, we first matched gene names to obtain 769 TF motif-gene

feature pairs. Mean-normalized gene scores and TF motif scores (see methods above for how these were computed) for these TF

genes were then used to compute the Pearson correlation coefficient between matched TF motif scores and TF gene scores across

all cancer cells and normal AT1 and AT2 cells, reflecting a total of 13,923 cells. To calculate the statistical significance of the corre-

lation, a permutation test was performed whereby the cell labels were permuted (n = 100 permutations with replacement). Permu-

tation p values were calculated using a Z-test comparing the observed TF motif-gene correlation coefficient to the permuted corre-

lation coefficients. TFmotif variability was computed by taking the standard deviation of the TFmotif scores across cells (n = 13,923).

TF motif-gene pairs with p value < 0.001 and TF motif variability of R 1.2 are considered significant. Activators and repressors are

defined as TF motif-gene pairs where correlations are either positive or negative, respectively.

TCGA Survival and Mutation Analysis

Survival and normalized RNA-seq gene expression data for primary LUADs profiled as part of The Cancer GenomeAtlas (TCGA) were

obtained using Firehose for the July 15th, 2016, release as previously described (Kartha et al., 2018). Module-specific gene signa-

tures were determined as described above. Then, for eachmodule, the average expression of geneswas computed for TCGA LUADs

having paired RNA-seq and survival outcome information (n = 506). Patients were grouped as either module ‘‘high’’ or ‘‘low’’ if their

module expression was above or below themedian, respectively, and the overall survival (OS) of patients was compared between the

two groups using a logrank test. Kaplan-Meier curves comparing OS in high versus lowmodule groups for highlighted modules were

generated using the survival (v2.41-3) and ggfortify (v0.4.10) packages in R. To test for association betweenmodule scores andKRAS

and TP53mutation status, binary somaticmutation calls for TCGA LUADswere obtained as previously described (Kartha et al., 2019).

Standardized module expression Z-scores were then compared between LUADs with (n = 23) and without (n = 198) any KRAS and

TP53 mutations using a Wilcoxon rank sum test.

RUNX TF Perturbation Analyses
To determine changes in chromatin accessibility induced by either overexpression or knockout of Runx2, perturbations were first

normalized to their respective controls. Controls represent bulk ATAC-seq for guides targeting tdTomato for each cell line. For TF

motif scores, the difference between the perturbation and control was determined. However, gene scores were first quantile normal-

ized, then the difference between perturbation and controls was computed. To ensure the efficacy of the perturbations, we confirmed

that i) every validated guide either increased or reduced the RUNX TFmotif score as expected (see Figure 6B), and ii) that the pertur-

bation was specific to the RUNX TF motif score (see Figure S6E). Next, we reasoned that CRISPRa overexpression would induce

different levels of RUNX protein activation, therefore to determine differential gene scores, the RUNX TF motif score was used as

a measure of the efficacy of the perturbation. The effect size (slope) from a linear regression between the differential RUNX TF motif

score and each gene score was used to determine differential gene scores associated with RUNX perturbation. To determine gene

set enrichments, gene scores were ranked by the calculated effect size. Following ranking, gene set enrichment was performed as

described above. All experiments completed were shown with technical replicates.

Gene Accessibility Score and RNA Expression Correlations in TCGA LUAD
To investigate the relation between gene accessibility score and RNA expression estimates in human primary LUADs, bulk tumor

ATAC-seq profiles generated for a subset of the TCGA LUADs, for whom paired RNA-seq information also existed (n = 21) (Corces

et al., 2018) were obtained. This ATAC-seq data comprised a total of 139,135 peaks, with the reads in peaks counts matrix quantile-

normalized. Gene activity scores were then computed using the normalized counts as described earlier (see section ‘‘Gene Activity

Scoring in Single Cells’’), with the following modifications: i) gene annotations corresponding to the hg38 genome build were used,

and ii) peaks overlapping the fixed window per TSS (9212 bp), and the corresponding read counts per peak were used to compute

weighted gene scores per sample. To contrast gene expression and activity profiles for genes encoding TFs relative to non-TF-en-

coding genes, the top 10,000 geneswere selected based on either total RNA expression or gene score across the samples assessed.

The intersection of the two ranked gene lists (n = 6,191 genes) was then used to determine the fold-change of either mean gene score

or mean RNA expression levels for TF (n = 228) versus non-TF (n = 5,963) annotated genes (determined by whether the gene was part

of the human_pwms_v2motif list from the chromVARmotifs package in R). Tomeasure the association between gene expression and

gene activity for genes of different gene activity levels, all genes that have expression and gene activity in at least 1 sample (n = 14,380

genes) were considered; the Pearson correlation of gene activity score to RNA expression per gene was then calculated. Correlation

values were then visualized for different gene score percentiles (10 percentile bins).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Methods
All of the statistical details for experiments can be found in the figure legends as well as the Method Details section. For all compar-

isons of independent observations between two groups, two-tailed t-tests were performed, with p values unless otherwise specified.

Z-tests were used to describe variance across groups. For all figures, **** represents p<0.0001, *** represents p<0.001, ** represents

p<0.01, and * represents p<0.05. Additional details are described below.

Reads in Peaks Counts for ATAC-seq Data
To generate count matrices for all single-cell and bulk ATAC-seq data, the number of reads overlapping a given peak window in the

determined peak set (see Method Details) was calculated for each unique cell barcode (sciATAC-seq and ETP data) or sample (cell

line bulk ATAC-seq). FRIP was computed as the fraction of the total number of sequenced reads per cell that fall in peaks and was

used, along with total unique nuclear reads per cell, to filter scATAC-seq cell barcodes.

TF Motif Scores, Gene Scores, and Module Associations
Quantification of chromatin accessibility features associated with sequence k-mers (used for single cell UMAP projection), TF motifs

(used for annotating cell clusters and peak modules), and modules was performed using chromVAR (Schep et al., 2017), and is

described under the Method Details sections and figure legends. For all these features, accessibility deviation Z-scores across

mouse lung cells (for scATAC-seq), or cell line (for bulk ATAC-seq) were used. Gene scores were computed for single cells or cell

lines as described earlier (Method Details). Gene scores were normalized by dividing by the mean gene score per cell (scATAC-

seq), or quantile-normalized (bulk ATAC-seq), prior to downstream analyses. The significance of TF-motif gene score correlations

was determined using permutation tests. Permutation p values were calculated using a Z-test comparing the TF-motif gene corre-

lation coefficient to the permutated correlation coefficients. TF motif-gene pairs with permutation p value < 0.001 and TF motif vari-

ability ofR 1.2 are considered significant. Activator and repressor TFs were represented with max/min-normalized correlation of TF

gene scores to module scores. Differential genes scores (AT1 and AT2 cells comparison) were represented as gene scores with ab-

solute fold-change value greater than 1.8. Peak modules were determined using tumor and metastatic cell sciATAC-seq data as

described under the Method Details section, and clustered and visualized using the log fold-change in mean module peak accessi-

bility betweenmotif-high vsmotif-low cell groups. Module-gene associations were determined by assigning each gene to themodule

with the highest Pearson r correlation (gene score to module Z-score correlation). Gene signatures per module were obtained by se-

lecting the top 200 genes basked on their associated correlation coefficients in a given module.

scATAC-seq Matching to scRNA-seq Datasets
Analysis of published scRNA-seq data was performed using the described meta-clusters (n = 260) representing clusters of cells

across different lung developmental time points (Cohen et al., 2018). To match epigenomic profiles to these meta-clusters, scA-

TAC-seq data were first filtered for highly variable gene scores and gene expression. The coefficient of variation (CV) of each

gene was computed for each data set and filtered for genes with a CV > 1 in both data sets, resulting in a total of 6,888 genes. To

match scATAC cells to meta-clusters, the most correlated (Pearson r) for each scATAC-seq cell was determined by matching

gene scores to gene expression across the two data sets.

GSEA Analyses and Survival Analysis
Gene set enrichment analysis was carried out using the pre-ranked GSEA mode as part of publicly available GSEA software (v3.0)

(http://www.broadinstitute.otherg/gsea/index.jsp), with default settings. For module enrichment analyses, ranked lists of human

gene identifiers and their correlation values (Pearson correlation of gene scores to module Z-scores) were used as input to test

for enrichments per module against annotated gene sets included in the MsigDB database. For CRISPR perturbation enrichment

analyses, slope coefficients of gene scores associated with differential perturbations were used to rank genes, and were queried

against either MsigDB gene sets or module gene signatures. For module-associated survival analysis in TCGA LUADs, gene signa-

tures permodule were first averaged, and then tested for association with overall patient survival using a log-rank test comparing high

vs low patient groups (determined based on the median module expression level). For testing association with oncogene mutational

status, a Wilcoxon rank-sum test was used to compare module expression Z-scores between TCGA LUADs with and without KRAS

and TP53 mutations.

Immunohistochemistry Quantification
Immunohistochemistry images were converted to .tif format using CaseViewer (v2.2.1). Each image was split into multiple non-over-

lapping tiles and corrected for background fluorescence using a 2DGaussian filter via a customMATLAB script. Tileswith DAPI stain-

ing were then processed using Ilastik Pixel + Object Classification (v1.3.3) to generate nuclear segmentation masks (Berg et al.,

2019). The resulting masks were loaded back into MATLAB (v2019a) and used to quantify the fluorescence within defined nuclear

regions for the other protein markers. For each nucleus, the pixel values for each marker were summed and log normalized before

visualization of the overall tissue distribution.
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Tail Vein Experiments
Each tail vein experiment was conducted with n = 5 animals in each group (control and RUNX2 KO). Survival significance was calcu-

lated using the survival log-rank (Mantel-Cox) test. Tumor burden studies were conducted with n = 5 animals in each group (control

and RUNX2 KO). Total tumor burden was calculated using the Aiforia machine learning algorithm and significance was determined

using Student t-tests.
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Figure S1. Related to Figure 1. (A) Quality control (QC) metrics for sciATAC-seq in 3T3/GM12878 
species-mixing experiment compared to published data (Cusanovich et al., 2015; Pliner et al., 2018; 
Preissl et al., 2018). QC includes percent fragments in TSS, percent nuclear fragments, and percent 
fragments in peaks as assessed in the GM12878 fraction of experiment. Number of cells analyzed is 
plotted in bar graph (right). Box intervals represent 25% and 75% bounds. (B) Tn5 insertions at 



positions relative to TSS across fixation conditions (unfixed to 1%) in GM12878 cells. (C) Number of 
fragments across fixation conditions (unfixed to 1%) in GM12878 cells. Box intervals represent 25% 
and 75% bounds. (D) Histogram of fragment sizes across fixation conditions (unfixed to 1%) in 
GM12878 cells. (E) Percentage of fragments associated with debris across fixation conditions (unfixed 
to 1%) in GM12878 cells. (F) Species-mixing plot demonstrating debris contamination in unfixed vs (G) 
fixed cells in pooled 3T3/GM12878 cells. (H) IHC for tdTomato, demonstrating that tumors maintain 
expression of tdTomato in late-stage tumors and immunofluorescence (IF) from frozen tumor section, 
scale bar 2 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S2. Related to Figure 2. (A) FACS plots demonstrating sorting strategy for KPT cancer cells 
and normal cells. Immune and endothelial FACS-depletion strategy is shown (TER119-APC, CD31-



APC, CD11b-APC, and CD19-APC). Enriched tdTom+ positive populations were utilized  for 
downstream sciATAC-seq. (B) Reads mapped to Trp53 locus in normal and KPT cancer cells to assess 
tumor purity. Red bar mapped to the expected Trp53 deleted region. p53 track: region 
chr11:69,573,794-69,598,424; Downsampling window was  50,000 and # of reads per window was 
4,000. (C) Exemplar cells sorted from individual KPT tumors profiled in this study. (D) FRIP overlaid on 
UMAP for all single-cells profiled (n = 17,274). (E) Library size as log10 fragments mapped to UMAP 
plot (library size) for all single-cells profiled (n = 17,274). (F) Percentile mean gene score associated 
with corresponding RNA expression in human LUAD patient data (Corces et al., 2018). (G) Normal lung 
populations identified by Louvain clustering, identified by gene scores and motifs (H) Aggregated bulk 
tracks across UMAP clusters, with peaks at genes associated with specific cell types. Actb tracks 
included for normalization across aggregated tracks. (I) Single-cell RNA-seq matching to normal 
sciATAC-seq populations to confirm cell type identification (Cohen et al., 2018). (J) Liver (Met-10N1) 
and lymph node (Met-10N2) metastatic cells derived from the same mouse (in red). (K) Hierarchical 
clustering of individual primary met-like cancer (left) or metastatic cells (isolated from lymph nodes) 
(right) with TF motif scores across samples. 
 



 
 
Figure S3. Related to Figure 3. (A) Top motif and gene scores associated with AT2 and AT1 cells 
(CEBPA, Sftpb; AT2, TEAD4, Fgf18; AT1). (B) Volcano plot of differential motif accessibility in normal 
AT2 and AT1 cells. (C) Cav1 gene score associated with AT1 cells. (D) Correlation of KPT cancer cells 



to AT2 and AT1 gene scores. (E) IHC of outlined KPT tumor; staining for HOPX (AT1 marker), PDPN 
(AT1 marker), SPC (AT2 marker), and RFP (pan-tumor marker). (zoom 400 µm; inset 50 µm). (F) IHC 
of outline late-stage tumor for SFTPB (AT2 marker) and CAV1 (AT1 marker): CAV1 (500 µm), SFTPB 
(500 µm). (G) Multiplexed IHC staining of KPT tumors at 16 weeks and 8 weeks; 16 week time point 
(PDPN: green; SFTPC: red; DAPI: blue) (scale bar; (left) Tumor 1: 500 µm; Tumor 2: 500 µm; (right) 
Tumor 1; 25x, 50 µm; Tumor 2: 20x, 50 µm). 8-week time point (NKX2-1: yellow; HOPX: green; 
SFTPC: red; DAPI: blue). (H) Matching of scATAC-seq single-cell identities to published scRNA-seq 
(Cohen et al., 2018).  Assignment of closest associated cell type in the tumor space. (I) Matching of 
lung development data to scATAC-seq cells. Time point labels were assigned based on most 
associated cells from specified time points (embryonic (E): E12.5, E16.5, E_late; postnatal (P): P_early, 
P_mid, P_day2, P_day7). Populations found across multiple time points were termed mixed (all 
timepoints), P_mixed (for mostly postnatal timepoints), or E_mixed (mixed embryonic timepoints) 
(Cohen et al., 2018). (J) Matching of 101.AT1.P_early overlaid on UMAP clustering data to most similar 
KP cancer cell.  
 



 
 
Figure S4. Related to Figure 4. (A) Scatter plots across TFs identifying top differential peaks from 
chromatin accessibility data. Significant peaks are highlighted in dark purple (FDR < 10-6). Example TFs 



plotted including CEBPG,  HNF4A, ZEB1, ONECUT1, RUNX1, and TEAD4. (B) Number of differential 
peaks for each motif assessed in the defined modules (FDR < 10-06). (C) UMAP representation of single 
cells demonstrating derived tumor progression score used for motif heatmap, Figure 4A, with a line fit 
indicating tumor progression from early to late/metastatic cells. (D) UMAP projection of ETP cells, with 
cells colored by module 5 accessibility. (E) Tracks of lung identity genes across module high cells and 
8-week time point (ETP; early time point) cells compared to normal AT2 and AT1 cell types. (F) GSEA 
of genes ranked by correlation of gene scores to accessibility scores for each module, highlighting 
enrichments of relevant gene sets. Dots colored for positive (red) or negative (blue) enrichment of gene 
set among the corresponding module-associated gene ranking; NES: Normalized Enrichment Score. 
(G) GSEA enrichment plot highlighting positive enrichment of EMT signature among genes correlated 
with module 4 accessibility (FDR q < 0.001). (H) Gene scores and motifs for select gene markers 
overlaid on UMAP clustering.  
 
 
 
 
 
 
 



 
Figure S5. Related to Figure 5. (A) Fold-change of TF- and non-TF-encoding genes, comparing gene 
expression to gene scores in TCGA LUADs (n = 21). Bar plots show the mean (+ s.e.) gene score or 
gene expression levels for either gene category. (B) Gene scores (top row) and motif scores (bottom 
row) across TF activators and repressors. Exemplary TFs were selected due to enrichment across 
modules. (C) Additional IHC from KP tumors presented in the main text, scale bar 250 µm, inset scale 
bar 50 µm. (D) RUNX1 and RUNX2 expression in the airway, scale bar 200 µm, inset 50 µm. (E) IHC 
for repressor BATF, ZKSCAN5 (present mostly in early-stage tumors), scale bar 200 µm. (F) Panel of 
differential gene scores for miRNAs. (G) Exemplar miRNAs gene scores painted on UMAP.  



 
Figure S6. Related to Figure 6. (A) Expression of RUNX family members (RUNX1, RUNX2, RUNX3) 
in KP tumor-derived cell lines (853T2, 860T1, 860T3, 1183T3, 1183T4, 932T2, 932T3, 932LN). NKX2.1 



staining delineates cell lines as having a more “non-metastatic” or “metastatic” phenotype. (B) RUNX 
family expression in cell lines used for CRISPR and CRISPRa experiments; (non-met: 853T2, 860T1; 
met: 1183T3, 860T3). (C) RUNX expression in cell lines isolated from plucked tumors (779T1, 779T2) 
and a lymph node (779LN). (D) Western blot demonstrating activation of Runx2 in 853T2 Cas9 cell line. 
(E) TF motif score comparison in OE and KO cells. (F) GSEA with respect to changes in RUNX motif 
accessibility from RUNX2 perturbation experiments in vitro reveals enrichment of module 4 and module 
9-associated single-cell gene signatures. (G) Normalized enrichment scores (NES) from GSEA for 
select gene sets and gene ontology (GO) terms that are associated with RUNX2 OE and KO cells. (H) 
Tracks highlighting differential chromatin accessibility at target genes identified by association with 
RUNX motif and module genes. (I) Genes plotted in decreasing order of perturbation score for top 
RUNX-regulated genes associated with module 2 (late-stage) using gene set enrichment analysis 
(GSEA). Genes associated with a matrisome signature are highlighted in blue. (J) Extracellular protein 
secretion array in 1183T3 Cas9 control and RUNX2 KO cell lines. Arrays quantified using Image J 
protein array plugin analysis. (K) UMAP of KPT tumor and normal lung cells highlighting gene scores 
identified in extracellular array computed using sciATAC-seq data for relevant cluster-specific genes. 
(L) IHC showing LGALS1 and RUNX2 expression in a late-stage KPT tumor, scale bar 50 µm. (M) 
RUNX2 and LGALS1 quantification of single-cells from multiplexed IHC image in Figure 6G. (N) 
Multiplexed IHC with rare RUNX2+ cells that overlap with LGALS1 localization (scale bar; 5.5x, 200 
µm). (O) Tumor area as a percentage of total lung area as quantified by Aiforia in an exemplar tail vein 
experiment with n = 5 mice per arm.  
 



 
 
Figure S7. Related to Figure 7. (A) LUAD tumor microarray (TMA) map stained with RUNX1 (left, 
center). LUAD TMA map from RUNX2 stain, highlighted RUNX2 positive (i) primary tumor and (ii) 
metastatic tumor (right). (B) RUNX tumor staining from the Human Protein Atlas (Uhlén et al., 2015). 
Files can be accessed at the links found in STAR Methods. (C) Gene-module assignments based on 
maximum Pearson correlation coefficient per gene across modules (from module accessibility score to 
gene score correlations, Fig. 7B) versus the mean gene score. The top 200 genes per module were 
used to define module-specific genes (D) Significance of module-associated gene expression with 
overall survival (OS) using a Cox proportional hazard (coxph) test in TCGA LUADs (n=506). Positive 
values denote decreased survival, negative values denote increased patient survival.  (E) Kaplan-Meier 
plot for overall survival (OS) with respect to  module 3-associated gene expression in TCGA LUADs. 



(F) Comparison of standardized module scores in patients with (group 1) and without (group 0) KRAS 
and TP53 somatic mutations in TCGA LUADs. Median plotted and box intervals represent 25% and 
75% bounds. (G) Kaplan-Meier plot for OS based on NKX2-1 RNA expression in TCGA LUADs. 
Patients split into High or Low groups based on median NKX2-1 expression. 
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