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SUMMARY
Cell differentiation and function are regulated across multiple layers of gene regulation, including modulation
of gene expression by changes in chromatin accessibility. However, differentiation is an asynchronous pro-
cess precluding a temporal understanding of regulatory events leading to cell fate commitment. Here we
developed simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq), a highly
scalable approach for measurement of chromatin accessibility and gene expression in the same single cell,
applicable to different tissues. Using 34,774 joint profiles from mouse skin, we develop a computational
strategy to identify cis-regulatory interactions and define domains of regulatory chromatin (DORCs) that
significantly overlap with super-enhancers. During lineage commitment, chromatin accessibility at DORCs
precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for lineage
commitment. We computationally infer chromatin potential as a quantitative measure of chromatin line-
age-priming and use it to predict cell fate outcomes. SHARE-seq is an extensible platform to study regulatory
circuitry across diverse cells in tissues.
INTRODUCTION

Regulation of chromatin structure and gene expression underlies

key developmental transitions in cell lineages (Novershtern et al.,

2011; Shema et al., 2019; Spitz and Furlong, 2012). In recent

years, genome-wide profiling of gene expression and chromatin

has helped uncover mechanisms of chromatin change at key

points of multi-lineage cell fate decisions (Shema et al., 2019;

Spitz and Furlong, 2012). Prior studies comparing profiles of pu-

rified populations have observed that changes in histone modifi-

cations and binding of lineage-associated transcription factors

(TFs) may precede and foreshadow changes in gene expression,

creating poised or primed chromatin states that bias genes for

activation or repression to alter lineage outcomes (Bernstein

et al., 2006; Lara-Astiaso et al., 2014; Rada-Iglesias et al.,

2011). For example, deposition of the histone modification

H3K4me1 has been shown to prime regulatory elements, biasing

cells for differentiation (Lara-Astiaso et al., 2014; Rada-Iglesias

et al., 2011) or immune cell activation (Heinz et al., 2010; Ostuni

et al., 2013). However, approaches to analyze primed chromatin
C

states rely on bulk measurements of histone modifications,

largely restricting analysis to well-defined chromatin states and

synchronous cell culture models or stem cell systems with

well-defined markers for fluorescence-activated cell sorting

(FACS) isolation. We therefore reasoned that an experimental

approach to measure chromatin accessibility and gene expres-

sion in the same single cell may enable identification of primed

versus active accessible chromatin, providing a means to iden-

tify new mechanisms of chromatin-mediated lineage-priming in

new cellular contexts at single-cell resolution.

Methods of combining measurements of different layers of

gene regulation in single cells may serve to determine regulators

of cell differentiation and can function as sensitivemarkers of cell

identity and cell potential (Kelsey et al., 2017; Shema et al.,

2019). Computational methods have had some success in inte-

grating single-cell epigenome, transcriptome, and protein mea-

surements profiled separately (Stuart et al., 2019; Welch et al.,

2019); however, these methods assume that these distinct mea-

surements reflect a common cell identity and may not correctly

recover changes unique to one layer, such as chromatin
ell 183, 1103–1116, November 12, 2020 ª 2020 Elsevier Inc. 1103
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Figure 1. SHARE-Seq Provides an Accurate Co-measure of Chromatin Accessibility and Gene Expression

(A) Workflow for measuring scATAC and scRNA from the same cell using SHARE-seq.

(B and C) Unique ATAC fragments (B) and RNA UMIs (C) aligning to the human or mouse genome. The experiment is performed using a mix of human (GM12878)

and mouse (NIH/3T3) cell lines.

(D) The percentage of ATAC or RNA reads aligning to the human genome relative to all reads mapping uniquely to the human or mouse genomes.

(E) Number of ATAC fragments in peaks or RNA UMIs for SHARE-seq (this study), sci-CAR (Cao et al., 2018), SNARE-seq (Chen et al., 2019), or Paired-seq

(Zhu et al., 2019). Boxplots denote the medians and the quartile ranges (25% and 75%), and the length of whiskers represents 1.53 interquartile ranges (IQRs).

(F) Aggregated single-cell chromatin accessibility and gene expression profiles in GM12878 cells (top), individual cell profiles (bottom), and single-cell average

(right). Single-cells are sorted by the normalized ATAC-seq yield of the depicted NFkB1 locus.
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accessibility-mediated lineage-priming. Emerging single-cell

‘‘multi-omics’’ technologies offer a direct means to determine

the coordination between layers of gene regulation. Prior studies

have sought to correlate gene expression with regulatory

element accessibility (Cao et al., 2018; Chen et al., 2019; Zhu

et al., 2019). However, these approaches had limited throughput

or sensitivity, restricting their ability to recover fine but biologi-

cally important differences between chromatin accessibility

and gene expression.

Here we investigate the dynamics of the epigenomic and tran-

scriptomic basis of cellular differentiation by developing simulta-

neous high-throughput ATAC (Buenrostro et al., 2013) and RNA

expression with sequencing (SHARE-seq) for individual or joint

measures of single-cell chromatin accessibility and gene

expression at low cost and on a massive scale. Using SHARE-

seq, we profiled 84,426 cells across 4 different cell lines and 3

tissue types, including mouse lung, brain, and skin. Applying

SHARE-seq to mouse skin shows that cell type definitions are

correlated between chromatin accessibility and gene expres-

sion, with notable exceptions including cell cycle genes. We

leverage the heterogeneity across single cells to infer chro-

matin-expression relationships and identify 63,110 peak-gene

associations in adult mouse skin. High-density peak-gene-asso-

ciated regions, to which we refer as domains of regulatory chro-

matin (DORCs), are enriched for lineage-determining genes and
1104 Cell 183, 1103–1116, November 12, 2020
overlap with known super-enhancers. Strikingly, during hair fol-

licle differentiation, chromatin at DORC-regulated genes be-

comes accessible before induction of the corresponding gene’s

expression, identifying a role of chromatin accessibility in prim-

ing active chromatin states. Building on this finding, we develop

an analytical framework, called ‘‘chromatin potential,’’ to infer

cell fate choices de novo. We describe an experimental and

analytical basis for integrated measurements of the epigenome

and transcriptome, opening new avenues to uncover principles

of gene regulation and cell fate specification across single cells

in diverse systems.

RESULTS

SHARE-Seq for Joint Profiling of Chromatin
Accessibility and Gene Expression at Scale
To create a chromatin accessibility and mRNA expression co-

profiling approach that is scalable and sensitive, we built on

SPLiT-seq and Paired-seq (Rosenberg et al., 2018; Zhu et al.,

2019) to develop SHARE-seq, which uses multiple rounds of hy-

bridization blocking to uniquely and simultaneously label mRNA

and chromatin fragments in the same single cell (Figure 1A; Fig-

ures S1A and S1B; STAR Methods). Briefly, in SHARE-seq, (1)

fixed and permeabilized cells or nuclei are transposed by Tn5

transposase to mark regions of open chromatin; (2) mRNA is
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Figure 2. SHARE-Seq Enables Joint Profiling of Chromatin Accessibility and Gene Expression in Tissues

(A) A schematic of tissues profiled with SHARE-seq, highlighting the cellular diversity within mouse skin.

(B and C) Comparison of library size estimates of SHARE-seq and other single-cell or nucleus-based approaches for scATAC-seq (B) and scRNA-seq (C) ap-

proaches. Boxplots denote the medians and the quartile ranges (25% and 75%), and the length of whiskers represents 1.53 IQRs.

(D) SHARE-seq uniformmanifold approximation and projection (UMAP) visualization of single cells derived frommouse skin showing UMAP coordinates defined

by RNA. Points colored by clusters are defined by RNA clustering, and cell types are assigned to clusters on the basis of marker genes, TF motifs, and chromatin

accessibility peaks. Computational pairing (Stuart et al., 2019) of scATAC-seq to scRNA-seq (right) is colored by predicted cell type. The IRS cluster is highlighted.

(E) SHARE-seq UMAP visualization of single cells derived from mouse skin showing UMAP coordinates defined by ATAC.

(F) Heatmap showing the proportion of cells in the RNA cluster that overlaps with chromatin-defined clusters.

(G) Marker gene expression and TF motif scores for each cluster.

(H) Aggregated scATAC-seq tracks denoting marker chromatin accessibility peaks for each cluster.

(legend continued on next page)
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reverse transcribed using a poly(T) primer containing a unique

molecular identifier (UMI) and a biotin tag; (3) permeabilized cells

or nuclei are distributed in a 96-well plate to hybridize well-spe-

cific barcoded oligonucleotides to transposed chromatin frag-

ments and poly(T) cDNA; (4) hybridization is repeated three

times, expanding the barcoding space to approximately 106

(963) barcode combinations (Figure S1B; Table S1), and,

following hybridization, cell barcodes are ligated simultaneously

to cDNA and chromatin fragments; (5) reverse crosslinking is

performed to release barcoded molecules; (6) cDNA is specif-

ically separated from chromatin using streptavidin beads, and

each library is prepared for sequencing; and (7) paired profiles

are identified using the common combination of well-specific

barcodes (Figure S1A). This barcoding strategy may be

extended to even larger experiments by using additional rounds

of hybridization (Figure S1B).

SHARE-Seq Generates High-Quality Chromatin and
Expression Profiles across Diverse Cell Lines and
Tissues
To validate specificity and data quality, we first performed

SHARE-seq on a mixture of human (GM12878) and mouse

(NIH 3T3) cell lines. Human and mouse reads were well sepa-

rated on chromatin and transcriptome profiles, resulting in 903

human and 1,341 mouse cells passing filters of 2,000 expected

cells (Figures 1B–1D). We identified only one cell doublet, repre-

senting a remarkably low 0.04% collision rate (consistent with

the expected rate of 0.052%; Figure S1C), a benefit of the large

SHARE-seq barcoding space. Cells passing filter (STAR

Methods) had, on average, 2,545 RNA UMIs (9,660 estimated

UMI library size) and 8,252 unique ATAC-seq fragments

(19,723 estimated library size with 65.5% fragments in peaks)

(Figures S1D and S1E).

SHARE-seq had similar performance across replicates and

additional cell lines (Figures S1F–S1M) and showed high concor-

dance with previously published single-cell ATAC sequencing

(scATAC-seq) datasets (STAR Methods; Figure S1J). SHARE-

seq also consistently outperformed previously published joint

ATAC-RNA approaches (Cao et al., 2018; Chen et al., 2019;

Zhu et al., 2019; Figure 1E). Notably, SHARE-seq RNA reads

(starting with cells or nuclei) are enriched for intronic regions,

similar to single-nucleus RNA sequencing (snRNA-seq) (Habib

et al., 2016; Figure S1N), which may be due to cell membrane

lysis and serial washes. Intronic RNA is enriched for nascent

RNA, which can be used not only to identify cell types (Habib

et al., 2017) but also to investigate temporal processes in single

cells (La Manno et al., 2018). Finally, chromatin accessibility at

the NFkB1 locus and NFkB1 gene expression significantly co-

varied across single cells (Spearman r = 0.31, p < 10�6, Z

test), validating our expectation that increased chromatin acces-

sibility results in higher gene expression and that SHARE-seq

may be used to query chromatin-gene expression relationships

(Figure 1F).
(I) The cluster-cluster correlation (Spearman correlation coefficient) of scATAC-s

calculated based on the average peak counts per cluster. The scRNA-seq corre

(J) Cells colored by the activity of cell cycle genes (left panel). An RNA cluster m

(top right panel) and scATAC UMAP space (bottom right panel).
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SHARE-seq performed well with cells or nuclei from a broad

range of tissues, including mouse skin, brain, and lung (Figures

2A–2C; Figure S2). SHARE-seq performed comparably with

scATAC-only approaches (Lareau et al., 2019; Mezger et al.,

2018) applied to adult mouse lung (STAR Methods; Figure 2B)

and single-nucleus RNA sequencing (snRNA-seq) and single-

cell RNA sequencing (scRNA-seq) (Saunders et al., 2018; Zeisel

et al., 2018; Habib et al., 2017) of adult mouse brain (STAR

Methods; Figure 2C; Figures S2C and S2D). SHARE-seq shows

similar data quality when starting with cells or nuclei (Figures

S2E–S2G), with the expected increase in the portion of intronic

RNA in nuclei. Importantly, SHARE-seq also enabled experi-

ments to be performed at a substantially lower cost than prior

methods. Altogether, these points validate the accuracy and util-

ity of SHARE-seq for integrated measures of chromatin accessi-

bility and gene expression in cell lines or primary tissues.

Broad Congruence between Chromatin and RNA
Defined Cell Types from SHARE-Seq
To utilize SHARE-seq to query the relationship between chro-

matin accessibility and gene expression, we focused on mouse

skin. Skin is enriched for cell types from diverse lineages—some

are highly proliferative, whereas others are dormant or cycling

slowly—with multiple populations of stem cells giving rise to

well-defined cell types (Adam et al., 2015; Cohen et al., 2018;

Fan et al., 2018; Hsu et al., 2014; Joost et al., 2018, 2020; Lien

et al., 2011; Salzer et al., 2018).

Leveraging the increased throughput and resolution of

SHARE-seq, we assessed the congruence between the epige-

nome and transcriptome across an atlas of 34,774 high-quality

profiles from adult mouse skin (Figure 2D; Figures S2H and

S2I). To define cell subsets, we clustered the RNA portion of

SHARE-seq data (Table S2). We then projected the cells based

on ATAC-seq and RNA-seq independently to a low dimensional

space (STAR Methods) and found that both projections sepa-

rated these scRNA-seq-defined clusters (Figures 2D and 2E).

SHARE-seq not only resolved cell types from distinct lineages

but could also distinguish between cells of closely related types

(for example, ahigh CD34+ bulge versus alow CD34+ bulge; Blan-

pain et al., 2004). Moreover, cell membership in scATAC-seq

clusters was highly congruent with membership in scRNA-seq

clusters (Figure 2F), and bothmeasures revealed the samemajor

cell types, such as transit-amplifying cells (TACs), inner root

sheath (IRS), outer root sheath (ORS), and hair shaft (HS) cells

(Figures 2D–2F).

Cells in the RNA-based clusters can also be distinguished by

chromatin accessibility features, further confirming their identity

(Figures 2G and 2H). We annotated clusters by the activity of

lineage-determining TFs, inferred from the scATAC-seq data

(Figure 2G; Schep et al., 2017), and their correlation with TF

RNA expression levels (Figures S2I and S2K; STAR Methods).

This analysis revealed the global transcriptional activators Dlx3

and Sox9 and repressors Zeb1 and Sox5 (Adam et al., 2015;
eq (top right) and scRNA-seq (bottom left). The scATAC-seq correlation was

lation was calculated based on average gene expression per cluster.

arked by high expression of cell cycle genes is highlighted in scRNA UMAP
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Huang et al., 2008; Spaderna et al., 2008), among many others

(Figure S2K). Thus, SHARE-seq provides insights into cell iden-

tity at multiple scales, including chromatin regulation by key line-

age-determining TFs.

Nevertheless, some cell states may be identified at higher res-

olution by chromatin or gene expression features. Specifically,

grouping clusters by their aggregate (pseudo-bulk) profiles re-

vealed more distinctive chromatin accessibility differences be-

tween the permanent portion (clusters 1–4) and regenerative

portion (clusters 5–9) of the hair follicle. Conversely, cells corre-

sponding to the granular layer are easier to distinguish as a

unique cluster at the gene expression level (Figure 2I). Moreover,

a subset of actively proliferating basal cells strongly expressing

cell cycle genes (Figure 2J), which formed a single group by

RNA, was not identified as a coherent cluster by chromatin

accessibility (with one of four different dimensionality reduction

approaches; Figure 2J; Figure S2L; STAR Methods). On the

other hand, the TAC populations, which also strongly expressed

cell cycle genes, were identified as a unique cluster by chromatin

accessibility (Figure S2M). In the TAC populations, expression of

cell cycle genes is also coupled to changes in lineage identity

factors (Figure 2G). This suggests that the cell cycle is more

associated with changes in gene expression and less predomi-

nant in chromatin accessibility profiles.

We reasoned that SHARE-seq can be used to directly test the

accuracy of computational approaches (Stuart et al., 2019) that

pair data from scATAC-seq and scRNA-seq from separately

measured cells. Such methods typically assume congruence

andmaymiss asynchrony or distinctions between these features

of cellular identity. We thus tested a canonical correlation anal-

ysis (CCA)-based method (Stuart et al., 2019) by providing the

ATAC-seq and RNA-seq portions of the SHARE-seq measure-

ments separately and comparing inferred pairing with the correct

(measured) coupling. Profiles from the same cell were assigned

properly (defined as membership in the same cluster) with vari-

able accuracy (74.9% in skin and 36.7% in mouse brain) (Figures

S2N–S2S), with most mis-assignments between clusters repre-

senting similar cell types (e.g., IRS to TACs; Figure 2D; Figures

S2Q and S2S). By down-sampling, we find that computational

errors are exaggerated when sequencing depth or cell numbers

are limited (Figure S2T). This suggests that SHARE-seqmay help

train computational pairing approaches across tissues or test

their performance and help with further improvements.

Paired Measurements Associate Chromatin Peaks and
Target Genes in cis

Cells exhibit significant variations in gene expression and the un-

derlying regulation of chromatin because of intrinsic (e.g., bursts

of expression; Larsson et al., 2019) and extrinsic (e.g., cell size,

level of regulatory proteins; Lin and Amir, 2018) factors.

SHARE-seq may allow us to infer the relationship between chro-

matin and gene expression. To test this, we developed an analyt-

ical framework to link distal peaks to genes in cis, based on the

co-variation in chromatin accessibility and gene expression

across cells, while controlling for technical biases in chromatin

accessibility measurements (Figure 3A; Figure S3; STAR

Methods). We first applied this approach to a dataset of

23,278 GM12878 cells and identified 13,277 significant peak-
gene associations (Figures S3B and S3C; Table S3; p < 0.05,

false discovery rate [FDR] = 0.11). To appropriately determine

the probability of interaction between our peaks and the identi-

fied target gene, we first sought to normalize for ATAC-seq

peak density surrounding gene promoters; ATAC-seq peaks

are commonly located near gene promoters (in these data,

61.3% of ATAC-seq peaks are within 2 kb of transcription start

sites [TSSs]). First normalizing for peak density near genes, we

determined the half-life of these peak-gene associations to be

24.4 ± 3.6 kb (95% confidence interval), resulting in a finding

surprisingly similar to a recent report assessing the effect of

cis-regulatory regions on gene expression using CRISPR-based

perturbation (24.1 kb) (Gasperini et al., 2019). Further validating

our approach, peak-gene associations are significantly enriched

in loops identified with H3K27ac HiChIP (p < 10�608, hypergeo-

metric test) and depleted in the repressive histone mark

H3K27me3 (Figure S3D). Determining peak-gene associations

without correction of technical biases (peak intensity and GC

content) resulted in a much smaller half-life (2.6 kb; Figure S3A).

Notably, down-sampling of cell numbers or reads dramatically

reduces the ability to discover peak-gene associations (Fig-

ure 3B). This demonstrates that the computational and experi-

mental improvements reported here are essential for accurately

determining peak-gene associations.

Applying this framework to the mouse skin dataset, we identi-

fied 63,110 significant peak-gene associations (within ± 50 kb

around TSSs, p < 0.05, FDR = 0.1; Table S4; Figures S3H and

S3I). These peak-gene associations were enriched proximally

to the TSSs (Figure S3G; p < 2.2 3 10�16, Kolmogorov–Smirnov

[KS test]), and most of the associations regulate a single gene

(83.9%; Figure S3J). Interestingly, in rare cases, individual peaks

associated with 4 or more genes (0.14% of peaks), including well

known gene clusters (Histone,Hox, andKeratin), suggesting that

these peaks may coincide with regulatory hubs controlling the

expression of gene clusters (Figure S3K). Although interesting,

these occurrences were rare and may also reflect technical arti-

facts; we therefore only considered the most significant peak-

gene association when associating target genes with peaks.

Finally, most of the chromatin peaks (82%; Figure S3L) were

not correlated with expression of any gene, a finding that sup-

ports a previous observation that perturbations in only a small

portion of candidate enhancers significantly alter the expression

of genes (Gasperini et al., 2019).

A subset of genes, including key fate determination genes, was

associatedwith a large number of peaks (p < 2.23 10�16, permu-

tation test). For example, 22 peaks were significantly associated

(within ± 50 kb around TSSs, p < 0.05) withDlx3, highly expressed

in TACs (Figure 3C; Adam et al., 2015). These results are reminis-

cent of previous observations describing regulatory locus

complexity at key lineage genes (González et al., 2015). Further,

regionswith a high density of peak-gene associations significantly

overlappedknownsuper-enhancers (Adametal., 2015; Figure3C;

Table S5; 2.1-fold enrichment, p = 10�238, hypergeometric test)—

enhancer regions that are cell-type-specific and highly enriched in

histone H3K27 acetylation (Whyte et al., 2013). This relationship

was not simply driven by super-enhancer length (Spearman r =

0.04; Figure S3M) or the total number of peaks surrounding a

gene (Figure S3N). Furthermore, super-enhancer-regulated genes
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Figure 3. cis Regulation Determines DORCs
(A) Schematic depicting an analytical framework for analysis of distal regulatory elements and expression of genes.

(B) Number of peak-gene associations after down-sampling the number of cells or reads in the GM12878 SHARE-seq dataset. Reads are down-sampled to

match the number of reads recovered to match those obtained by sci-CAR (Cao et al., 2018).

(C) Loops denote the p value of chromatin accessibility of each peak and Dlx3 RNA expression (± 500 kb from TSSs). Loop height represents the significance of

the correlation. H3K4me1 and H3K27ac ChIP-seq tracks and super-enhancer annotation were generated from an isolated TAC population (Adam et al., 2015).

Grey bars denote scATAC-seq peaks. Blue bars denote peaks that are significantly associated with the Dlx3 gene. The magnified tracks show the aggregated

ATAC-seq data of each cluster.

(D and E) The number of significant peak-gene associations for all genes (D) and previously defined (Adam et al., 2015) super-enhancer genes (E).

(F) The number of significantly correlated peaks (p < 0.05) for each gene (± 50 kb from TSSs). Known super-enhancer-regulated genes are highlighted.

(G) Representative DORCs for each cluster; values are normalized by the min and max activity.

(H) The peak counts of all Dlx3 correlated peaks (left) and Dlx3 gene expression (right) colored in UMAP. The arrows point to regions with differential signals.
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Figure 4. Lineage Dynamics of Chromatin and Expression Defines Lineage-Priming

(A) Pseudotime for three cell fate decisions shown on scATAC UMAP coordinates.

(B) Difference (residuals) for Wnt3 between chromatin accessibility and gene expression for the regenerative portion of the hair follicle.

(C) Histogram of the average difference (residuals) for each gene between chromatin accessibility and gene expression.

(D) Scatterplot of the Wnt3 DORC score and Wnt3 gene expression.

(E) Dynamics of gene expression (intron and exon) and individual chromatin accessibility peaks for the cuticle/cortex lineage.

(F) Hierarchical clustering of chromatin accessibility, expression of DORC-regulated genes, and the difference between chromatin accessibility and gene

expression (residuals) for the cuticle/cortex lineage. Cells are ordered by pseudotime.

(legend continued on next page)
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are associated with more peaks compared with all genes (10.9

versus 4.4 associated peaks per gene, on average; p < 2.2 3

10�16, KS test; Figures 3D and 3E; Figure S3O). Finally, most an-

notated cell cycle genes (n = 97) had lower-than-expected

numbers of peak-gene associations (on average, 3.4 associations

for cell cycle genes versus 4.4 associations for all genes; p =

0.026, t test), further supporting a limited contribution of chromatin

accessibility to cell cycle-associated gene expression changes

and suggesting that variable expression is not sufficient for deter-

mining peak-gene associations.

DORCs Identify Key Lineage-Determining Genes
De Novo

We define the 857 regions with an exceptionally large (>10) num-

ber of significant peak-gene associations as DORCs, identified as

those exceeding an inflection point (‘‘elbow’’) when ranking genes

by the number of significant associations (Figure 3F). We quanti-

fied the activity of DORCs as the sum of accessibility at peaks

significantly associated with the DORC-regulated gene. The

DORCs identified in sub-populations strongly overlap with

DORCs identified with all cells (p = 10�201, hypergeometric test;

Figure S3P). Moreover, DORCs were strongly enriched for known

key regulators of lineage commitment across the expected line-

ages (Figure 3G; Figure S3Q). Notably, only 34.4% of DORCs

active in hair follicle stem cells (HFSCs) or TACs overlap with su-

per-enhancers identified in these same cell types (Adam et al.,

2015), suggesting that DORCs may encompass other mecha-

nisms promoting formation of enhancer clusters (Hnisz et al.,

2017; Li et al., 2002). Finally, there were significant differences in

DORCs even between closely related populations (Figures S3R

and S3S), suggesting that DORCs are highly cell type specific.

Interestingly, gain of chromatin accessibility does not always

equate productive transcription. For example, although Dlx3

DORC and Dlx3 gene expression were active in TAC/IRS/

medulla cells, this was not the case in cuticle/cortex cells, where

the Dlx3 DORC is active and the Dlx3 gene is not highly ex-

pressed (Figure 3H; Figure S3T). Thus, DORCs provide an unsu-

pervised, readily accessible approach to simultaneously identify

key lineage-determining genes and their regulatory regions at

single-cell resolution without the need to know the cell type iden-

tity in advance, isolate cell subsets, and conduct challenging

chromatin immunoprecipitation sequencing (ChIP-seq) experi-

ments from primary samples.

Lineage-Priming at Enhancers Precedes Gene
Expression in DORCs
The hair follicle is a highly regenerative epithelial tissue that cy-

cles between growth (anagen), degeneration (catagen), and
(G) Lineage dynamics for individual DORC-regulated genes, highlighting lineage-p

(red cluster in F). The shaded region presents a 0.99 confidence interval.

(H) TF motif enrichment in lineage-priming DORCs plotted against Spearman co

(I) Lineage dynamics of Lef1 andHoxc13motif scores and gene expression preced

probability of the hair shaft lineage.

(J) Pairwise correlation of DORC to expression of DORC-regulated genes and enri

determine meaningful regulations.

(K) TF regulatory network showing the driver TF for each DORC. The width of an

expression and DORC score. The magnified image shows TFs and DORCs that

(L) Schematic of the stepwise model of Lef1, Hoxc13, and Wnt3 activation in the
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rest (telogen). At anagen onset, hair follicle stem cells located

at the bulge and hair germ proliferate transiently to produce

short-lived TACs. These TACs are some of the most proliferative

cells in adult mammals; they divide rapidly to produce multiple

morphologically and molecularly distinct downstream differenti-

ated cell types that constitute the mature hair follicle, including

the companion layer, IRS, and hair shaft (hair shaft cuticle, cor-

tex, and medulla) (Zhang and Hsu, 2017; Zhang et al., 2016).

We readily recovered three hair follicle differentiation trajec-

tories (IRS, medulla, and cuticle/cortex, differentiated from

TACs) from chromatin accessibility (Figure 4A). Systematically

analyzing the cuticle/cortex trajectory revealed that DORCs

generally become accessible prior to onset of their associated

gene’s expression, consistent with lineage-priming. For

example, Wnt3 RNA became detectable at the late stage of

hair shaft differentiation (Millar et al., 1999); however, accessi-

bility in the Wnt3 DORC activated at TACs prior to gene expres-

sion before lineage commitment (Figure 4B), which we quantified

by computing ‘‘residuals’’ (defined as the difference of chromatin

accessibility and expression of the gene; STAR Methods).

Despite peak-gene associations being defined by high correla-

tion, we found that residuals were typically positive across

most of the DORC-regulated genes (92%) and lineages (Fig-

ure 4C; Figures S4A and S4B). Thus, sufficiently high RNA

expression is only detectable in a subset of DORC-active cells,

likely reflecting a requisite gain of accessible chromatin at that

gene’s locus.

To further understand the gene-regulatory mechanisms un-

derlying these residuals, we tracked the accessibility changes

at individual peaks near the Wnt3 locus along differentiation

pseudotime from TACs to cuticle/cortex cells (Figure 4D; Fig-

ure S4C). We found sequential activation of peaks in the Wnt3

DORC, with individual enhancer peaks activating much earlier

than the Wnt3 promoter, followed by activation of nascent

RNA expression (estimated by intron counts) and, finally, mature

RNA expression (estimated by exon counts) (Figure 4E).We posit

that activation of the promoter was the limiting factor for induced

expression ofWnt3. For better visualization of DORC-associated

residuals, we clustered DORCs into 4 groups (Figure 4F; Fig-

ure S4G), including a late-activating group to which we refer as

the ‘‘cuticle/cortex module.’’ There was a lag of pseudotime be-

tween the onset of accessibility and the corresponding RNA

expression (Figure 4G). Notably, some TACs at late pseudotime

are still proliferative (as estimated by cell cycle gene expression);

however, they already show activated enhancer peaks, suggest-

ing a switch between proliferation and differentiation transition-

ing (Figure 4E). Importantly, lineage-priming is not restricted to

the cuticle/cortex lineage but also exists in IRS and medulla
riming inWnt3 (left), Tubb6 (center), and the mean of the cuticle/cortex module

rrelation of the cuticle/cortex module DORC score and TF gene expression.

eWnt3DORC activation in the hair shaft lineage. A green line shows the branch

chment of the TF motif in the DORC. The red dashed lines indicate the cutoff to

edge indicates the significance (�log10(FDR)) of correlation between TF RNA

are directly connected to the Lef1 TF.

hair shaft lineage.
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lineages (Figure S4H). These analyses support the long-standing

hypothesis that enhancer activation foreshadows expression of

target genes (Lara-Astiaso et al., 2014; Rada-Iglesias et al.,

2011) and implicates chromatin accessibility as amarker for line-

age-priming.

We further investigated the mechanisms leading to chromatin

accessibility-primed chromatin states and hypothesized that

TFs that prime are distinct from TFs that activate enhancers.

Indeed, we found that binding sites for Lef1 and Hoxc13 TFs

were strongly enriched (p < 10�4, KS test; Figure 4H) in cuticle/

cortex module DORCs (including the Wnt3 DORC). By pseudo-

temporal ordering of RNA expression and TF motif activity (in-

ferred from ATAC), we found clear ordering of Lef1 RNA onset

first, followed by Lef1 motif accessibility, Hox13 RNA, Hoxc13

motif accessibility along with Wnt3 DORC activity, and, finally,

Wnt3RNA. This implicates Lef1 as the lineage-priming TF (Merrill

et al., 2001). Hoxc13 expression following this first wave of chro-

matin accessibility likely further induces Wnt3 DORC accessi-

bility, which finally promotes expression of Wnt3 (Figure 4I; Fig-

ure S4I). Interestingly, the pseudotime-determined cuticle/

cortex branch probability tracks closely with Lef1 gene expres-

sion, particularly at early stages of differentiation, providing a

genome-wide measure supporting Lef1 as the TF regulating

lineage choice. This supports a model where distinct modes of

regulation exist to prime chromatin accessibility and foreshadow

lineage choice.

Leveraging DORCs and the TFs that regulate them, we con-

structed a TF-regulatory network that underlies hair follicle

differentiation (STAR Methods), relating each TF to each DORC

(Figures 4J and 4K; https://buenrostrolab.shinyapps.io/

skinnetwork/). Consistent with our stepwise model of regulatory

events leading to lineage commitment, Lef1 and Hoxc13 TFs are

central components of the network driving the activity of cuticle/

cortex genes, including Wnt3 and Trps1 (Figure 4L). Interest-

ingly, we also identified highly connected transcriptional repres-

sors (TFs that negatively correlate with DORC activity levels),

including Gli3 and Tcf12, associated with the Sonic hedgehog

(Shh) signaling pathway (Park et al., 2000; Mill et al., 2003).

Thus, SHARE-seq, together with our computational framework,

can measure lineage-priming and predict novel regulators.

Chromatin Accessibility Priming Coincides with
Multilineage Fate Bias and Histone Modifications
We further sought to find out how early during differentiation we

could identify markers of lineage commitment. To investigate

this, we identified DORCs that were differentially active between

cuticle/cortex and medulla cells preceding the lineage decision,

including Notch1, Cux1, and Lef1 (Figure S5A). Notch1, highly

expressed in hair shaft cells, is critical in controlling hair follicle

differentiation (Pan et al., 2004). When we partitioned the line-

age-priming region into 3 sub-regions by the DORCs’ accessi-

bility (Figures 5A and 5B),Notch1+ andNotch1� regions showed

distinct chromatin patterns with coordinated changes in gene

expression (Figures S5A and S5B), whereas Notch1+ cells

were not distinctly identified by their gene expression pattern

alone (Figure 5B). We observed clear chromatin differences

across Notch1+ and Notch1� cells in the lineage-priming-asso-

ciated regions (Figures 5C and 5D). This further demonstrates
that genome-wide changes in chromatin accessibility reflect

lineage-primed cell states and highlightsNotch1- and Tchh-spe-

cific chromatin changes priming gene expression activation.

Further analyses of chromatin accessibility-primed states re-

vealed that lineage-primed loci also reflect primed histonemodi-

fication states. Enhancers can be categorized as poised

(H3K4me1high and H3K27aclow), active (H3K4me1high and

H3K27achigh), and inactive (H3K4me1low and H3K27aclow)

(Lara-Astiaso et al., 2014; Rada-Iglesias et al., 2011; Figure 5E).

We found that Lef1 andHoxc13 loci are poised in telogen HFSCs

located at the bulge and hair germ (Rompolas et al., 2012, 2013)

and then become active when HFSCs differentiate to TACs (Fig-

ure 5F). Furthermore,Wnt3 and Tchh loci are poised in TACs and

then become active when TACs differentiate to hair shaft cells

(Figure 5F). Extending this analysis to all DORCs, we found

that DORCs with higher residuals coincided with a stronger

signature of a poised chromatin state (p = 0.009; Figure 5G).

We demonstrate that low levels of chromatin accessibility at

DORCs are amarker of poised chromatin correlatingwith lineage

fate outcomes across single cells.

Chromatin Potential Describes Chromatin-to-Gene
Expression Dynamics during Differentiation
Empowered by our findings, we hypothesized that lineage-prim-

ing by chromatin accessibility may foreshadow gene expression

and may be used to predict lineage choice prior to lineage

commitment. Focusing on DORC-regulated genes, we devised

an approach to calculate ‘‘chromatin potential,’’ defined as the

future RNA state most compatible with a cell’s current chromatin

state (STAR Methods). We computed RNA-chromatin neighbors

(k-nearest neighbors [k-NN], k = 10) and found, for each cell (cell

x, chromatin neighborhood), 10 cells (cell y, RNA neighborhood)

whose RNA expression of DORC-regulated genes is most corre-

lated with the current chromatin state. Chromatin potential (ar-

row) is the direction and distance between each cell (cell x, chro-

matin neighborhood) and the 10 nearest cells (cell y, RNA

neighborhood) in chromatin low-dimensional space (Figure 5H;

Figures S5C and S5D). Its arrow length is a measure of how

different the chromatin state is from the ‘‘future’’ RNA state.

Notably, this analysis does not rely on the inferred pseudotime.

Chromatin potential relates a potential ‘‘future’’ RNA state

(observed in another cell) that is best predicted by the chromatin

state of a given cell.

In general, chromatin potential flows from progenitor cells

(TACs) to differentiated cells (IRS/hair shaft) (Figure 5H). Chro-

matin potential arrows are longer at key multi-lineage defining

transitions, including the branchpoint that defines the cuticle/

cortex and medulla lineages. However, some long arrows re-

flecting rare cells may be due to noise in the assay, errors in

embedding the cells into lower dimensions, or technical biases.

Chromatin potential identified a distinct root-like position in addi-

tion to the original pseudotime-identified root (Figure 5H). TACs

are molecularly and spatially heterogeneous (Genander et al.,

2014; Joost et al., 2020; Legué and Nicolas, 2005; Xin et al.,

2018; Yang et al., 2017). These progenitors divide perpendicu-

larly relative to the basement membrane and are set up by

epithelial-mesenchymal niches in the regenerating hair follicle

(Figure 5I; Figure S5E). At anagen III, lineage-primed and
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Figure 5. Chromatin Potential Describes Chromatin-to-Gene Expression Dynamics during Differentiation

(A) Chromatin accessibility of the Notch1 DORC, highlighting the lineage-priming region.

(B) Distribution of Notch1+ and Notch1� lineage-primed cells in the scRNA UMAP.

(C) UMAP visualization of the chromatin accessibility profiles around the Tchh region in (D).

(D) Aggregated chromatin accessibility profiles of lineage-primed (Notch1+/�) progenitor cells (TACs) and differentiated cells (cuticle/cortex and medulla).

(E–G) The chromatin accessibility-primed chromatin state is reflected by the histone modification state. The ChIP-seq data were downloaded from Adam et al.

(2015) and Lien et al. (2011).

(E) Schematic showing different categories of enhancers.

(F) ChIP-seq genome tracks showing lineage-priming genes that are identified by SHARE-seq and are active in TACs. Genes expressed in differentiated cells are

poised in TACs.

(G) The ChIP-seq signal enrichment in lineage-specific genes that are defined by genes with higher expression in the hair shaft than in TACs. The lineage-specific

genes are further classified by their residuals (DORC-RNA expression). Low-residual DORCs and high-residual DORCs refer to the bottom 10 percentile and top

10 percentile of genes ranked by residuals, respectively.

(H) Schematic of the conceptual workflow for determining chromatin potential (left). Chromatin potential is visualized on the scATAC UMAP space, and arrows

denote the extrapolated gene expression state of the cell (right).

(I) Schematic of TAC heterogeneity. Left: heterogeneous progenitor cells vertically differentiate to fat-committed cells. Right: TACs differentiate to IRS-TACs and

HS-TACs first and further differentiate to HS and IRS.

(J) UMAP visualization of the ATAC portion of SHARE-seq data on different hair follicle stages, projected to the data in Figure 2E.

(K) The cell type compositions of different hair follicle stages.

(L) RNA velocity visualized on scRNA UMAP coordinates.

(M) The difference between the neighborhood predicted by chromatin potential and RNA velocity.
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spatially restricted TACs emerge and are largely unipotent pro-

genitors. These TACs are distinct and emerge frommulti-lineage

progenitor TACs seen in earlier anagen stages. The identified

two roots show distinct molecular profiles consistent with previ-

ous reports of lineage-biased TACs (Joost et al., 2020; Yang

et al., 2017; Figure S5F). The novel root is supported by RNA ve-

locity (Figure S5G) as well as pseudotime inferred from the

scRNA-seq data alone (Figure S5H), further supporting a model

where both roots are associated with cells in an undifferenti-

ated state.

To further validate the hypothesis that the novel root reflects

lineage-biased progenitors, we performed SHARE-seq on

different hair follicle stages (first telogen, anagen III, anagen VI,

and second telogen) and evaluated the cell type compositions

(Figures 5J and 5K; Figures S5I–S5K). Consistent with prior

studies (Joost et al., 2020; Yang et al., 2017), we found a similar

proportion of TAC-1 (the pseudotime-defined root) and TAC-2

(the additional root determined by chromatin potential) cells in

anagen III and anagen VI stages and a significantly higher portion

of stem cells in first telogen (hair germ) and differentiated cells

(IRS/medulla/hair shaft) in anagen VI. This suggests that TAC-1

and TAC-2 are the roots in differentiation (Figure S5K). Chro-

matin potential allows us to relate the chromatin state of one

cell to future RNA states, identifying likely paths cells may follow

during developmental transitions.

Chromatin potential exceeds our ability to predict future RNA

states from the cell’s current RNA state by its mRNA or nascent

RNA (as shown by RNA velocity; La Manno et al., 2018), empha-

sizing the longer timescales foreshadowed by chromatin states

(Figures S5L–S5N). RNA velocity-derived vectors provided little

resolution of cell fate dynamics within TACs (Figure 5L; Fig-

ure S5G). The discrepancy between RNA velocity and chromatin

potential is most prominent in TACs (Figure 5M). Interestingly,

chromatin potential has a longer reach (prediction timescales)

at early stages, whereas RNA velocity has a farther reach at

late pseudotimes (p < 2.23 10�16, KS test; Figure S5P). RNA ve-

locity, which relies on differences between unspliced and spliced

mRNAs (Rabani et al., 2011), predicts the future of individual

cells on a timescale of hours (La Manno et al., 2018). In contrast,

the timescales of changes associated with chromatin states are

less well defined (Kelsey et al., 2017); however, they are largely

established prior to gene expression (Bernstein et al., 2006;

Rada-Iglesias et al., 2011; Shema et al., 2019). We therefore

reasonably expect that chromatin potential may predict the

future cell state on a timescale greater than that seen by RNA ve-

locity, especially during differentiation.

DISCUSSION

To infer transcriptional regulation and recover key regulatory re-

gions in differentiation, SHARE-seq provides a means to infer

DORCs reflecting key lineage-determining genes and the TFs

that regulate them. Leveraging SHARE-seq, it should now be

possible to identify key regulatory regions, including develop-

mental super-enhancers, and their associated target genes

without isolating specific cell subsets or ChIP-seq experiments,

which can be challenging for in vivo samples or may not even be

known a priori. Inclusion of more layers of measurements and
improved computational methods to illustrate the differences

between chromatin regulators and gene expression should

enable a more robust approach to defining chromatin-gene dy-

namics in complex tissues. This is important in developmental

biology, cancer research, and especially human genetics, where

genetic variants associated with complex human diseases are

found in non-coding regions, which can be challenging to relate

to specific cell types and target genes.

We define chromatin potential to describe the difference be-

tween chromatin and expression upon hair follicle differentia-

tion. Recently, RNA velocity approaches have predicted a cell’s

future state from the differences between nascent and mature

RNA (categorized by intronic and exonic reads). In contrast,

chromatin potential enables analysis of genes irrespective of

whether they have introns (e.g., the TFs Jun, Sox2, and

Foxq1 in our analysis have no introns) and prediction of lineage

fates prior to nascent transcription. Chromatin changes may

also reflect lineage bias rather than lineage choice. Primed

chromatin states can be altered or reversed (Bernstein et al.,

2006; Lara-Astiaso et al., 2014; Ostuni et al., 2013; Weiner

et al., 2016). Therefore, unlike RNA velocity, we consider chro-

matin potential a measure of what the cell will likely do rather

than a measure of what the cell has committed to do. A fasci-

nating direction for future research will be to determine differ-

ences in chromatin potential, RNA velocity, and lineage choice

(through lineage tracing). Furthermore, building computational

tools to integrate chromatin potential with RNA velocity may

enable multi-state vectors aimed to predict the continuous tra-

jectory a cell may follow.

SHARE-seq provides a generalizable platform and opportunity

to include additional layers of information per cell. With further

development, we expect to integrate other scRNA-seq-compat-

ible measurements (Stuart et al., 2019), such as protein mea-

surements (Stoeckius et al., 2017), genotyping, and lineage

barcoding. Furthermore, powered by the massive scalability of

this approach, SHARE-seq may be adapted to identify RNA

barcodes, particularly useful for CRISPR-based perturbation

screens (Dixit et al., 2016). As we move toward a cell atlas, we

anticipate that SHARE-seq will likely play a key role in deter-

mining the full diversity of cell types and cell states, the regula-

tors that define them, and the effect of common genetic variants

on molecular processes in specific cell types.
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anti-CD140a eBioscience Cat# 13-1401-82; RRID: AB_466607

Bacterial and Virus Strains

C3013 NEB C3013I

Chemicals, Peptides, and Recombinant Proteins

RNase Inhibitor QIAGEN Enzymatics Y9240L

SUPERase$In RNase Inhibitor Thermo Fisher Scientific AM2696

NxGen RNase Inhibitor Lucigen 30281-2

16% Formaldehyde (w/v) Thermo Fisher Scientific 28906

Glycine Sigma Aldrich 50049

1M Tris HCl pH 7.5 Thermo Fisher Scientific 15567027

1M Tris HCl pH 8.0 Thermo Fisher Scientific 15568025

5M NaCl Thermo Fisher Scientific AM9760G

1M MgCl2 Sigma Aldrich 63069

10% NP-40 Surfact-Amps Thermo Fisher Scientific 28324

Buffer EB QIAGEN 19086

DNA Clean & Concentrator-5 Zymo D4014

PEG 6000 Sigma Aldrich 528877

Maxima H Minus Reverse Transcriptase

(200 U/mL)

Thermo Fisher Scientific EP0753

Deoxynucleotide (dNTP) Solution Mix NEB N0447L

T4 DNA ligase NEB M0202L

T4 DNA Ligase Reaction Buffer NEB B0202S

Proteinase K from Tritirachium album Sigma Aldrich P2308-100MG

Sodium Dodecyl Sulfate 20% (SDS) Solution VWR 97062-440

Phenylmethanesulfonyl fluoride (PMSF) Sigma Aldrich P7626

2-Propanol Sigma Aldrich I9516

0.5M EDTA Thermo Fisher Scientific AM9260G

TWEEN20 Sigma-Aldrich P9416-100ML

Ficoll PM-400 (20%) Sigma-Aldrich F5415-25ML

KAPA HiFi HotStart ReadyMix Fisher Scientific NC0295239

AMPure XP Beckman Coulter A63880

Ethanol Sigma-Aldrich 8.18760.2500

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32854

FlashGel DNA Cassettes Lonza 57031

Dithiothreitol (DTT), 0.1M Solution Thermo Fisher Scientific 707265ML

NEBNext High-Fidelity 2X PCR Master Mix NEB M0541L

Glycerol Thermo Fisher Scientific 15514011

Protease Inhibitor Cocktail Sigma-Aldrich P8340

TRIS-Acetate Buffer 0.2M, pH 7.8 Bioworld 40120265-2

Potassium acetate Sigma-Aldrich 95843-100ML-F

Magnesium acetate Sigma-Aldrich 63052-100ML

SYBR Green I Nucleic Acid Gel Stain Thermo Fisher Scientific S7563

Dimethylformamide (DMF) Thermo Fisher Scientific 20673A
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Quick-Load Purple 100 bp

DNA Ladder

NEB N0551S

Gel Loading Dye, Purple (6X) NEB B7024S

PBS Thermo Fisher Scientific 10010049

Deposited Data

SHARE-seq data This manuscript GEO: GSE140203

Visualization of SHARE-seq skin data This manuscript https://buenrostrolab.shinyapps.io/skinnetwork/

sci-ATAC data Cusanovich et al., 2015 GEO: GSE67446

sci-ATAC data Pliner et al., 2018 GEO: GSE109828

sci-ATAC data Preissl et al., 2018 GEO: GSE1000333

SureCell scATAC data Lareau et al., 2019 GEO: GSE123581

Flugidm scATAC data Buenrostro et al., 2015 GEO: GSE65360

sci-ATAC data LaFave et al., 2020 GEO: GSE134812

10x snRNA brain data 10x genomics https://support.10xgenomics.com/single-cell-

gene-expression/datasets/2.1.0/nuclei_2k

10x scRNA brain data Zeisel et al., 2018 NCBI SRA: SRP135960

Drop-seq brain data Saunders et al., 2018 GEO: GSE116470

DroNc-seq brain data Habib et al., 2017 GEO: GSE71585

HiChIP data Mumbach et al., 2017 GEO: GSM2705041

sci-CAR A549 cell line data Cao et al., 2018 GEO: GSE117089

SNARE-seq cell line mixture data Chen et al., 2019 GEO: GSE126074

Paired-seq cell line mixture data Zhu et al., 2019 GEO: GSE130399

Skin ChIP data Adam et al., 2015 GEO: GSE61316

Skin ChIP data Lien et al., 2011 GEO: GSE31239

Experimental Models: Cell Lines

GM12878 Coriell Institute GM12878

NIH/3T3 ATCC CRL-1658

Experimental Models: Organisms/Strains

C57BL/6J Jackson Labs stock 000664

Oligonucleotides

Oligo seqeuences see Table S1 N/A

Software and Algorithms

R (v3.5.3) R Development Core Team, 2019 https://www.R-project.org

chromVAR R package (v0.2.0) Schep et al., 2017 https://github.com/GreenleafLab/chromVAR

bowtie2 (v2.3.3.1) Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

MACS2 (v2.1.2) Zhang et al., 2008 https://github.com/macs3-project/MACS

samtools (v1.9) Li et al., 2009 http://samtools.sourceforge.net

Picard toolkit (2.14.1-SNAPSHOT) NA http://broadinstitute.github.io/picard

cLoops (v0.93) Cao et al., 2018 https://github.com/YaqiangCao/cLoops

STAR (v2.7.5) Dobin et al., 2013 https://github.com/alexdobin/STAR

UMI-Tools Smith et al., 2017 https://github.com/CGATOxford/UMI-tools

featurecounts Liao et al., 2014 http://subread.sourceforge.net

Seurat (v3) Stuart et al., 2019 https://satijalab.org/seurat/

Similarity NEtwork FUSION Wang et al., 2014 http://compbio.cs.toronto.edu/SNF/SNF/

Software.html

cisTopic (v2) Bravo González-Blas et al., 2019 https://github.com/aertslab/cisTopic
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snapATAC Fang et al., 2020 https://github.com/r3fang/snATAC

Palantir (v0.2.6) Setty et al., 2019 https://github.com/dpeerlab/Palantir

Velocyto La Manno et al., 2018 http://velocyto.org
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jason

Buenrostro (jason_buenrostro@harvard.edu).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and Code Availability
The accession number for the SHARE-seq data reported in this paper is GEO: GSE140203.

The R Shiny-based web application for data visualization is accessible here: https://buenrostrolab.shinyapps.io/skinnetwork/

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
GM12878 cells were cultured in RPMI 1640 medium (11875-093, ThermoFisher) supplemented with 15% FBS (16000044,

ThermoFisher) and 1%penicillin-streptomycin (15140122, ThermoFisher). NIH/3T3 and RAW264.7 cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, 11965092, ThermoFisher) with the addition of 10% FBS and 1% of penicillin-streptomycin. Cells

were incubated at 37�C in 5% CO2 and maintained at the exponential phase. NIH/3T3 and RAW 264.7 cells were digested with ac-

cutase for preparing single-cell suspension.

Mice
Mice were maintained in an Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) approved animal

facility at Harvard University and MIT. Procedures were approved by the Institutional Animal Care and Use Committee of all institu-

tions (institutional animal welfare assurance no. A-3125-01, 14-03-194 and 14-07-209). Normal lung, skin and brain were collected

from wild-type mice from C57BL/6 mice aged to 6-8 weeks. Mice of both sexes were used for experiments.

Mouse skin
Female C57BL/6J mouse dorsal skins were collected at late anagen (P32). The hair cycle stages were confirmed using cryosection-

ing. To generate whole skin a single cell suspension, skin samples were incubated in 0.25% collagenase in HBSS at 37�C for

35-45 minutes on an orbital shaker. Samples were gently scraped from the dermal side and the single-cell suspension was collected

by filtering through a 70mmfilter followed by a 40mmfilter. The epidermal portion of the skin samples were incubated in 0.25% trypsin-

EDTA at 37�C for 35-45 minutes on the shaker and cells were gently scraped from the epidermal side. Single-cell suspensions were

combined and centrifuged for 5 minutes at 4�C, resuspended in 0.25% FBS in PBS, and stained with DAPI (0.05 mg/ml). Live cells

were enriched by FACS. To enrich epidermal populations, CD140a negative populations were purified by FACS and combined

with whole skin cells in a ratio of 1:1.

Mouse brain
An adult mouse brain was dissected, snap-frozen on dry ice, and stored at �80�C. A single nucleus suspension was prepared

following the OMNI-ATAC protocol (Corces et al., 2017). Frozen brain tissue was placed into a pre-chilled 2mL Dounce homogenizer

with 2 mL of 13 homogenization buffer (320mM sucrose, 0.1mM EDTA, 0.1% NP40, 5mMCaCl2, 3mMMg(Ac)2, 10mM Tris pH 7.8,

1% Protease Inhibitor Cocktail), and 1mM DTT). Tissue was homogenized with 10 strokes with the pestle A, followed by 20 strokes

with the pestle B. The samplewas centrifuged at 100 g for 1min to remove large debris. 400 mL of the supernatant was transferred to a

pre-chilled 2mL round bottom tube. 400 mL of a 50% iodixanol solution (50% iodixanol in 13 homogenization buffer) was added and

mixed. 600 mL of a 29% iodixanol solution (29% iodixanol and 480mM sucrose in 13 homogenization buffer) was layered underneath

the 25% iodixanol mixture. 600 mL of a 35% iodixanol solution (35% iodixanol and 480mM sucrose in 13 homogenization buffer) was

layered underneath the 29% iodixanol solution. In a swinging-bucket centrifuge, nuclei were centrifuged for 20 min at 3,000 g. Nuclei
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were resuspended in PBSI (0.1U/ml Enzymatics RNase Inhibitor, Y9240L, QIAGEN; 0.05U/ml SUPERase inhibitor, AM2696, Thermo-

Fisher; 0.04% Bovine Serum Albumin, BSA, 15260037, ThermoFisher in PBS) and proceed to fixation.

Mouse lung
Mouse lung was dissociated with fine scissors followed by proteolytic digestion using the Lung Dissociation kit (Miltenyi Biotech)

following the manufacturer’s instructions. Dissociated cells were then incubated at 37�C for 20 minutes with rotation, then filtered

using a 100 mm strainer. Red blood cells were lysed using the ACK buffer (A1049201, ThermoFisher).

METHOD DETAILS

Transposome preparation
Tn5 was produced in-house by following a published protocol with minor modifications (Picelli et al., 2014). The pTXB1-Tn5 expres-

sion vector was transformed into C3013 cells (NEB) following the manufacturer’s protocol. Each colony was incubated in a 5ml LB

medium at 37�C for overnight shaking at 200rpm. That culture was used to start a 1L LB culture with 100mg/ml ampicillin and incu-

bated on a shaker until it reached O.D. �0.6 (�3 hours). Then the culture was chilled on ice for 30min. Fresh IPTG was added to

0.25mM to induce expression, and the culture was incubated at 18�C on a shaker at 200rpm overnight. The culture was collected

by centrifugation at 6,000rpm, 4�C for 15min. The bacterial pellet was frozen and stored at�80�C for at least 30min. The frozen pellet

was resuspended in 40 ml chilled HEGX Buffer (20mM HEPES-KOH at pH 7.2, 0.8M NaCl, 1mM EDTA, 10% glycerol, 0.2% Triton

X-100) including 13Roche Complete EDTA-free protease inhibitor tablets and 10 mL Benzonase nuclease (Sigma E1014). The lysate

was sonicated on the Bioruptor until a large fraction of cells were lysed. The sonicated lysate was centrifuged at 30,000 g at 4�C for

20min. A 2ml aliquot of chitin slurry resin (NEB, S6651S) was packed into a disposable column (Bio-rad 7321010). Columns were

washed with 30ml of a HEGX buffer. The soluble fraction was added to the chitin resin slowly, then incubated on a rotator at 4�C
8 hours or overnight. The unbound soluble fraction was drained, and the columns were washed thoroughly with a 40ml HEGX buffer.

The chitin slurry was eluted with 10ml of elution buffer (10ml HEGX with 100mM DTT) on rotator at 4�C for �48h. The eluate was

collected and dialyzed twice in 500 ml of Tn5 Dialysis Buffer (100mM HEPES-KOH pH 7.2, 0.2M NaCl, 0.2mM EDTA, 2mM DTT,

0.2% Triton X-100, 20%Glycerol). The dialyzed protein solution was concentrated using an Amicon Ultra-4 Centrifugal Filter Units

30 K (Millipore UFC803024), and sterile glycerol was added tomake a final 50%glycerol stock of the purified protein. If an extra lower

weight band was observed when running the product on a protein gel, the product was further purified using a gel filtration column.

Transposome activity quantification
To evaluate the activity of the homemade Tn5, we compared the efficiency of homemade transposome with Nextera TDE1 transpo-

some. We performed standard bulk ATAC-seq experiment (Buenrostro et al., 2013) using Nextera TDE1 or homemade Tn5 diluted

with the dilution buffer (50mM Tris, 100mM NaCl, 0.1mM EDTA, 1mM DTT, 0.1% NP-40, and 50% glycerol) at different ratios. The

tagmention was performed on 50ng purified genomic DNA instead of cells. We quantified the number of required cycles to reach 1/3
of the plateau fluorescence by qPCR (Buenrostro et al., 2013) and determined the final dilution factor of homemade Tn5 that showed

the most similar number of cycles as Nextera TDE1.

SHARE-seq
Preparing oligonucleotides for ligations

There are three barcoding rounds of hybridization reactions in SHARE-seq, with a different 96-well barcoding plate for each round

(Table S1). Hybridization oligos have a universal linker sequence that is partially complementary to well-specific barcode sequences.

These strands were annealed prior to cellular barcoding to create a DNA molecule with three distinct functional domains: a 50 over-
hang that is complementary to the 50 overhang present on the cDNAmolecule or transposed DNA molecules (may originate from RT

primer, transposition adaptor or previous round of barcoding), a unique well-specific barcode sequence, and another 50 overhang
complementary to the overhang present on the DNA molecule to be subsequently ligated. Linker strands and barcode strands for

the hybridization rounds were added to RNase-free 96-well plates to a total volume of 10 ml/well with the following concentrations:

round 1 plates contain 9 mM round 1 linker strand and 10 mMbarcodes, round 2 plates contain 11 mM round 2 linker strand and 12 mM

barcodes, and round 3 plates contain 13 mM round 3 linker strand and 14 mMbarcodes. The oligos are dissolved in STE buffer (10mM

Tris pH 8.0, 50mMNaCl, and 1mMEDTA). Oligos are annealed by heating plates to 95�C for 2 minutes and cooling down to 20�C at a

rate of �1�C per minute.

Blocking strands are complementary to the 50 overhang present on the DNA barcodes used during hybridization barcoding rounds.

Blocking occurs after well-specific barcodes have hybridized to cDNA molecules, but before all cells are pooled back together. The

blocking stepminimizes the possibility that unbound DNA barcodes mislabel cells in future barcoding rounds. 10 mL of each blocking

strand solution was added to each of the 96 wells after the first, second, and third round of hybridization of DNA barcodes, respec-

tively. Blocking strand solutions were prepared at a concentration of 22 mM for round 1, 26.4 mM for round 2, and 23 mM for round 3.

Blocking strands for the first two rounds were in a 2 3 T4 DNA Ligase buffer (NEB) while the third round was in 0.1% Triton X-100.

Both ligation reaction and blocking reaction were incubated with cells for 30 minutes at room temperature with gentle shaking

(300rpm). All the oligos are thawed to room temperature before using.
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Fixation

For simplicity, cells and nuclei, which were processed identically for the following steps, are both referred to as cells. Cells were

centrifuged at 300 g for 5 minutes and resuspended to 1 million cells/ml in PBSI. Cells were fixed by adding formaldehyde

(28906, ThermoFisher, final concentration of 0.1% for cell lines or 0.2% for primary tissues) and incubated at room temperature

for 5 minutes. The amount of fixation affects both sequencing library complexity and ambient RNA contamination. We chose

0.1%–0.2% FA fixation to improve library complexity. If a significant amount of ambient RNA contamination is observed, more strin-

gent fixation conditions (up to 1%) could be used. The fixation was stopped by adding 56.1 mL of 2.5M glycine, 50 mL of 1M Tris-HCl

pH 8.0, and 13.3 mL of 7.5% BSA on ice. The sample was incubated at room temperature for 5 minutes and then centrifuged at 500 g

for 5 minutes to remove supernatant. All centrifugations were performed on a swing bucket centrifuge. The cell pellet was washed

twice with 1ml of PBSI, and centrifuged at 500 g for 5 minutes between washings. The cells were resuspended in PBS with 0.1U/ml

Enzymatics RNase Inhibitor and aliquoted for transposition.

Transposition

All the oligos used in this protocol can be found in Table S1. The 100 mMRead1 and phosphorylated Read2 oligos were annealedwith

an equal amount of 100 mM blocked ME-complement oligo by heating at 85�C for 2 minutes and slowly cooling down to 20�C at a

ramp rate of �1�C/minute. The annealed oligos were mixed with an equal volume of cold glycerol and stored at �80�C until use. In-

house produced Tn510 was mixed with an equal volume of dilution buffer (50mM Tris, 100mM NaCl, 0.1mM EDTA, 1mM DTT, 0.1%

NP-40, and 50% glycerol). Diluted Tn5 was then mixed with an equal volume of annealed oligos and incubated at room temperature

for 30 minutes before transposition.

For each transposition reaction, 5 mL of cells (10,000-20,000 cells in PBSI) and 42.5 mL of transposition buffer (38.8mMTris-acetate,

77.6mM K-acetate, 11.8mM Mg-acetate, 18.8% DMF, 0.12% NP-40, 0.47% Protease Inhibitor Cocktail, and 0.8U/ml Enzymatics

RNase Inhibitor) were mixed and incubated at room temperature for 10 minutes. 2.5 mL of assembled Tn5 was added to the trans-

position reaction. Depending on the target number of cells to be recovered, the number of transposition reactions can be scaled up.

In general, we prepare 10-40 reactions, which is equivalent to 100,000-800,000 cells. The transposition was carried out at 37�C for

30 minutes with shaking at 500rpm. The sample was centrifuged at 1,000 g for 3 minutes and then washed with 1ml Nuclei Isolation

Buffer (NIB) (10mMTris buffer pH 7.5, 10mMNaCl, 3mMMgCl2, 0.1%NP-40, freshly added 0.1U/ml Enzymatics RNase Inhibitor, and

0.05U/ml SUPERase RI). The sample was then resuspended to 60 mL of NIB and before proceeding to reverse transcription.

Reverse transcription

Transposed cells (60 ml) were mixed with 240 mL of RT mix (final concentration of 13 RT buffer, 0.4U/ml Enzymatics RNase Inhibitor,

500 mM dNTP, 10 mM RT primer with an affinity tag, 15% PEG 6000, and 25U/ml Maxima H Minus Reverse Transcriptase). The RT

primer contains a poly-T tail, a Unique Molecular Identifier (UMI), a universal ligation overhang, and a biotin molecule. The sample

was heated at 50�C for 10 minutes, then went through 3 thermal cycles (8�C for 12 s, 15�C for 45 s, 20�C for 45 s, 30�C for 30 s,

42�C for 120 s and 50�C for 180 s), and finally incubated at 50�C for 5 minutes. After reverse transcription, 300 mL of NIB was added

and the sample was centrifuged at 1,000 g for 3 minutes to remove supernatant. Cell pellet was washed with 0.5ml of NIB and centri-

fuged at 1,000 g for 3 minutes. Cells were resuspended in 4,608 mL of hybridization mix (1x T4 ligation buffer, 0.32 U/ml Enzymatics

RNase Inhibitor, 0.05 U/ml SUPERase RI, 0.1% Triton X-100, and 0.25 3 NIB).

Hybridization and ligation

Cells in ligation mix (40 ml) were added to each of the 96 wells in the first-round barcoding plate. Each well already contained 10 mL of

the appropriate DNA barcodes. The round 1 barcoding plate was incubated for 30 minutes at room temperature with gentle shaking

(300rpm) to allow hybridization to occur before adding blocking strands. 10 mL of round 1 blocking oligo was added and the plate was

incubated for 30minutes at room temperature with gentle shaking (300rpm). Cells from all 96 wells were combined into a single multi-

channel basin. Subsequent steps in round 2 and round 3 were identical to round 1, except that 50 mL and 60 mL of pooled cells were

split and added to barcodes in round 2 (total volume of 60 ml/well) and round 3 (total volume of 70 ml/well), respectively. After adding

the round 3 blocking oligo, cells from all wells were combined and centrifuged at 1,000 g for 3minutes to remove supernatant. The cell

pellet was washed twice with 1ml of NIB, and centrifuged at 1,000 g for 3 minutes between washings. Cells were resuspended in the

ligation mix (1x T4 ligation buffer, 0.32U/ml Enzymatics RNase Inhibitor, 20U/ml T4 DNA ligase (M0202L, NEB), 0.1% Triton X-100,

0.2 3 NIB) and incubated for 30 minutes at room temperature with gentle shaking (300rpm). Cells were washed with 0.5ml NIB

and resuspended in 100 mL of NIB, counted and aliquoted to 0.2ml PCR tubes with 1,000-20,000 cells per tube. SHARE-seq allows

preparation of libraries from large numbers of cells and easily enables sequencing from subsets of barcoded cells allowing for easy

QC of new samples and for reducing sequencing costs, useful features when performing large scale experiments.

Reverse crosslinking and affinity pull-down

NIB was added to each sample to bring the volume to 50 mL in total. 50 mL of 2 3 reverse crosslinking buffer (100mM Tris pH 8.0,

100mMNaCl, and 0.04%SDS), 2 mL of 20mg/ml proteinase K, and 1 mL of SUPERase RI weremixedwith each sample and incubated

at 55�C for 1 hour. 5 mL of 100mM PMSF was added to the reverse crosslinked sample to inactivate proteinase K and incubated at

room temperature for 10minutes. For each sample, 10 mL of MyOne C1 Dynabeads were washed twice with 13 B&W-T buffer (5mM

Tris pH 8.0, 1M NaCl, 0.5mM EDTA, and 0.05% Tween 20) and once with 13 B&W-T buffer supplemented with 2U/ml SUPERase RI.

After washing, the beads were resuspended in 100 mL of 2 3 B&W buffer (10mM Tris pH 8.0, 2M NaCl, 1mM EDTA, and 4U/ml

SUPERase RI) and mixed with the sample. The mixture was rotated on an end-to-end rotator at 10rpm for 60 minutes at room tem-

perature. The lysate was put on a magnetic stand to separate supernatant and beads.
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scATAC-seq library preparation

The supernatant that contained the transposed DNA fragments was purified with QIAGEN Minelute PCR clean up kit and eluted to

20 mL of Tris buffer (pH 8.0). Fragments were amplified in 50 mL PCR reaction (13 NENnext, 0.5 mM library-specific Ad1 primer, and

0.5 mMP7 primer. The PCR reaction was carried out at the following conditions: 72�C for 5minutes, 98�C for 30 s, and then 5 cycles at

98�C for 10 s, 65�C for 30 s and 72�C for 1 minute. After running 5 cycles of PCR, we took a 25 mL sample, add 10 mL of PCR cocktail

with 0.63 SYBRgreen, and ran qPCR. The qPCR reactions were amplified to saturation to determine the number of cycles required

for the remaining samples on the plate. The number of extra cycles was determined as the number of qPCR cycles to reach 1/3 of

saturated signal. The qPCR reaction was carried out at the following conditions: 95�C for 3 minutes, and then 20 thermal cycles at

98�C for 30 s, 65�C for 20 s and 72�C for 3 minutes.

cDNA library preparation

Beads were washed three times with 1 3 B&W-T buffer and once with STE (10mM Tris pH 8.0, 50mM NaCl, and 1mM EDTA) both

supplemented with 1U/ml SUPERase inhibitor. Beads were resuspended in 50 mL of template switch mix (15% PEG 6000, 13Max-

ima RT buffer, 4% Ficoll PM-400, 1mM dNTPs, 4U/ml NxGen RNase Inhibitor, 2.5 mM TSO, and 10U/ml Maxima H Minus Reverse

Transcriptase). Beads were rotated on an end-to-end rotator at 10rpm for 30 minutes at room temperature, and then shaken at

300rpm for 90 minutes at 42�C. Beads were resuspended by pipetting every 30 minutes during agitation. After template switching,

100 mL of STE were added to each tube to dilute the sample. The supernatant was removed by placing the sample on a magnetic

stand. Beads were washed with 200 mL of STE without disturbing the bead pellet. Beads were then resuspended in 55 mL of PCR

mix (1 3 Kapa HiFi PCR mix, 400nM P7 primer, and 400nM RNA PCR primer). The PCR reaction was carried out at the following

conditions: 95�C for 3minutes, and then 5 cycles at 98�C for 30 s, 65�C for 45 s and 72�C for 3minutes.We then took a 2.5 mL sample,

added 7.5 mL of PCR cocktail with 13 EvaGreen (Biotium), and ran qPCR. The qPCR reactions were amplified to saturation to deter-

mine the number of cycles required for the remaining samples on the plate. The number of extra cycles was determined as the num-

ber of qPCR cycles to reach 1/3 of saturated signal. The qPCR reactionwas carried out at the following conditions: 95�C for 3minutes,

and then 20 thermal cycles at 98�C for 30 s, 65�C for 20 s and 72�C for 3minutes. Amplified cDNAwas purified by 0.83 (for cell line) or

0.6 3 (for primary tissue) AMPure beads and eluted to 10 mL of Tris pH 8.0 buffer. The amount of cDNA was quantified by Qubit

(ThermoFisher).

Tagmentation and scRNA-seq library preparation

100 mM Read1 oligo was annealed with an equal amount of 100 mM blocked ME-complement oligo and assembled with Tn5 as

described above. For each sample, 50ng cDNA was fragmented in a 50 mL tagmentation mix (1 3 TD buffer from Illumina Nextera

kit (10mM Tris HCl pH 7.5, 5mMMgCl2, 10% DMF final concentration), and 5 mL assembled Tn5) at 55�C for 5 minutes. Fragmented

cDNA was purified with the DNA Clean and Concentrator kit (Zymo) and eluted to 10 mL of Tris pH 8.0 buffer. Purified cDNA was then

mixed with tagmentation PCR mix (25 mL of NEBNext High-Fidelity 23 PCR Master Mix, 1 mL of 25 mM P7 primer and 1 mL of 25 mM

Ad1 primer with sample barcodes). PCR was carried out at the following conditions: 72�C for 5 minutes, 98�C for 30 s, and then 7

cycles at 98�C for 10 s, 65�C for 30 s and 72�C for 1 minute. The amplified library was purified by 0.7 3 AMpure beads and eluted

to 10 mL of Tris buffer (pH 8.0).

Quantification and sequencing

Both scATAC-seq and scRNA-seq libraries were quantified with the KAPA Library Quantification Kit and pooled for sequencing.

Libraries were sequenced on the Next-seq platform (Illumina) using a 150-cycle High-Output Kit (Read 1: 30 cycles, Index 1: 99 cy-

cles, Index 2: 8 cycles, Read 2: 30 cycles) or the Nova-seq platform (Illumina) using a 200-cycle S1 kit (Read 1: 50 cycles, Index 1: 99

cycles, Index 2: 8 cycles, Read 2: 50 cycles).

SHARE-ATAC-seq pre-processing
Raw sequencing reads were trimmed with a custom python script. Reads were aligned to the hg19 or mm10 genome using bowtie2

(Langmead and Salzberg, 2012) with (-X2000) option. For each read, there are four sets of barcodes (eight bases each) in the indexing

reads. The data were demultiplexed, tolerating one mismatched base in each 8-base barcode. Reads with alignment quality < Q30,

improperly paired, mapped to the unmapped contigs, chrY, and mitochondria, were discarded. Duplicates were removed using Pic-

ard tools (http://broadinstitute.github.io/picard/). Open chromatin region peakswere called on individual samples usingMACS2 peak

caller (Zhang et al., 2008) with the following parameters:–nomodel –nolambda –keep-dup -call-summits. Peaks from all samples

were merged and peaks overlapping with ENCODE blacklisted regions (https://sites.google.com/site/anshulkundaje/projects/

blacklists) were filtered out. Peak summits were extended by 150bp on each side and defined as accessible regions. Peaks were

annotated to genes using Homer (Heinz et al., 2010). The fragment counts in peaks and TF scores were calculated using chromVAR

(Schep et al., 2017).

SHARE-RNA-seq pre-processing
Base calls were converted to the fastq format using bcl2fastq. Reads were trimmed with a custom python script. We removed reads

that do not have TTTTTT at the 11-16 bases of Read 2 allowing one mismatch. Reads were aligned to the mouse genome (version

mm10) using STAR (Dobin et al., 2013) (STAR–chimOutType WithinBAM–outFilterMultimapNmax 20–outFilterMismatchNoverLmax

0.06–limitOutSJcollapsed 2000000). For species mixing experiments, reads were aligned to a combined human (hg19) and mouse

(mm10) genome and only primary alignments were considered. Data were demultiplexed, tolerating one mismatched base in each
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8-base barcode. Aligned reads were annotated to both exons and introns using featurecounts (Liao et al., 2014). To speed up pro-

cessing, only barcode combinations with > 100 reads were retained. UMI-Tools (Smith et al., 2017) was used to collapse UMIs of

aligned reads that werewithin 1ntmismatch of another UMI. UMIs that were only associatedwith one readwere removed as potential

ambient RNA contamination. A matrix of gene counts by cell was created with UMI-Tools. For cell line data, cells that expressed >

7,500 genes, < 300 genes, or > 1%mitochondrial reads were removed. For tissue data, cells that expressed > 10,000 genes, < 100

genes, or > 2% mitochondrial reads were removed. Expression counts (number of transcripts) for a given gene in a given cell were

determined by counting unique UMIs and compiling a Digital Gene Expression (DGE) matrix. Mitochondrial genes are removed.

Seurat V3 (Stuart et al., 2019) was used to scale the DGE matrix by total UMI counts, multiplied by the mean number of transcripts,

and values were log transformed. To visualize data, the top 3,000 variable genes were projected into 2D space by UMAP (McInnes

et al., 2018).

Peak-gene cis-association and DORC identification
To calculate peak-gene associations in cis, we considered all ATAC peaks that are located in the ± 50 kb or ± 500 kbwindow around

each annotated TSS.We used peak counts and gene expression values to calculate the observed Spearman correlation (obs) of each

peak-gene pair. To estimate the background, we used chromVAR to generate 100 background peaks for each peak by matching

accessibility and GC content, and calculated the Spearman correlation coefficient between those background peaks and the

gene, resulting in a null peak-gene Spearman correlation distribution that is independent of peak-gene proximity. We calculated

the expected population mean (pop.mean) and expected population standard deviation (pop.sd) from expected Spearman correla-

tions. The Z score is calculated by z = (obs-pop.mean)/pop.sd. We observed a small portion of peaks are negatively correlated with

gene expression (1.2% of total peaks). For simplicity, we used a one-sided z-test to determine p-values. For peaks associated with

multiple genes, we only kept peak-gene associations with the smallest p-value. Of note, when background peak correction is not

performed, the peak-gene associations show strong bias toward higher accessibility regions resulting in a strong bias toward pro-

moter associated interactions.

To define DORCs (a set of nearby peaks per gene), we rank genes by the number of significantly associated peaks (± 50kb around

TSSs, p < 0.05). We used 10 and 5 peaks per gene as cutoffs for skin data and GM12878 data, respectively. We then re-calculate

peak-gene association by expanding the window to ± 500kb around TSSs. Prior to calculating DORC scores, we first normalized

peak counts by the total number of unique fragments in peaks per cell. Following normalization, we defined the DORC score for a

gene as the sum of counts in all significantly correlated peaks per gene to obtain a cell x DORC score matrix. To calculate the

DORC score per cell type, we simply compute the average across all cells per cell type.

TF regulatory network
To define the TFs that regulate DORCs, we set two criteria. First, we calculated the -log10(p value) of the Spearman correlation be-

tween mean normalized DORC gene expression and DORC score. Second, we calculated the TF motifs that are enriched in the

DORC. To do this, we performed PCA on DORC scores and found the k-nearest neighbors (k-NN, k = 50) of each DORC in PC space.

We then obtained a PWMscorematrix (peak x TFmotif) usingmatchMotifs (out = ’’scores,’’ p.cutoff = 0.05) function in the chromVAR

package (Schep et al., 2017). The enrichment of TF motifs is defined by the -log10(p value) (KS test) of the PWM scores in peaks en-

compassed in the k-NN of the DORCs compared to PWM scores in GC- and accessibility- matched peaks. The GC and accessibility

matched peakswere derived using the getBackgroundPeaks function in chromVAR. Based on the distribution of -log10(p value) of the

Spearman correlation and TF motif enrichment, we manually set cutoffs to select TFs that regulate DORCs.

HiChIP
Processed HiChIP fragments file was downloaded from Mumbach et al. (2017) and converted to bedpe using hicpropairs2bedpe

function in cLoops package (Cao et al., 2020). The loops are called per chromosome using cLoops -f bedpe.gz -o dir -w -j -s -m

4. To compare with peak-gene associations, we filtered HiChIP loops that have at least one end anchored at promoters (+2kb

and �200bp of TSSs).

Comparison to other technologies
We compared the performance of SHARE-seq to sci-CAR (Cao et al., 2018), SNARE-seq (Chen et al., 2019) and Paired-seq (Zhu

et al., 2019) using cell line data. We used deeply sequenced GM12878 data for SHARE-seq, published A549 cell line data for sci-

CAR (Cao et al., 2018) and published cell line mixture data for SNARE-seq (Chen et al., 2019) and Paired-seq (Zhu et al., 2019).

We used the authors’ count matrices, which were obtained on libraries that were sequenced to saturation. For each assay, we deter-

mine the cutoff by ranking the number of unique molecules per cell barcode. We set cutoff at the steep drop-off which indicates sep-

aration between the cell-associated barcodes and the barcodes associated with debris.

To compare SHARE-seq with other high-throughput scATAC-seqmethods using cell line data, we used the approach described in

previous paper (Lareau et al., 2019), and compared with published datasets, including Cusanovich et al. (2015) (GSE67446), Pliner

et al. (2018) (GSE109828), Preissl et al. (2018) (GSE1000333), Lareau et al. (2019) (GSE123581), and Buenrostro et al. (2015)

(GSE65360).
Cell 183, 1103–1116.e1–e10, November 12, 2020 e7



ll
Resource
To compare scATAC-seq technologies in primary tissue, we generated sci-ATAC, SHARE-seq, and 10x Genomics scATAC-seq

datasets on an adult mouse lung using the same sample processing method (above).

To compare SHARE-seq with other high-throughput scRNA-seq/snRNA-seq methods, we processed four adult mouse brain

datasets the same way as SHARE-seq. We downloaded count matrix for nuclei (https://support.10xgenomics.com/

single-cell-gene-expression/datasets/2.1.0/nuclei_2k) and cells (Zeisel et al., 2018) processed by 10x Genomics (P60 cortex,

SRP135960), cells processed by Drop-seq (Saunders et al., 2018) (P60 Cortex, GSE116470), and nuclei processed by DroNc-seq

(Habib et al., 2017) (PFC, GSE71585).

Cell cycle signature
To calculate the cell cycle signature, we used our previously published cell cycle gene list (Tirosh et al., 2016) and summed up the

normalized cell cycle gene counts per cell. We did not regress out the cell cycle signature, because it is one of the most important

signatures in TACs.

Computational pairing
To confirm if computational pairing methods correctly predict cell type in scATAC-seq based on a scRNA-seq profile, we

used Seurat v3.0 (Stuart et al., 2019) to calculate gene activity scores from scATAC-seq. Next, we identified anchors between

the scATAC-seq and scRNA-seq datasets using CCA (Stuart et al., 2019) and used these anchors to transfer cell-type

labels from scRNA-seq to scATAC-seq. We calculated the percent of mismatch between the predicted cell type to the actual

cell type.

Brain data analysis
For the brain sample, we aggregated scATAC-seq data generated using SureCell (Lareau et al., 2019) as pseudo-bulk samples, then

extracted a small number of principal components (PCs) from the normalized pseudo-bulk count matrix. We next projected the

scATAC-seq data to the space spanned by the PCs. The projected data was then visualized using tSNE and UMAP. To jointly cluster

on ATAC and RNA signals, we used Similarity NEtwork FUSION (Wang et al., 2014) to combine the distance matrix in chromatin

space and RNA space. After generating the fused distance matrix, we then calculated the k-nearest neighbor graph and found clus-

ters using the Louvain community detection algorithm. The clusters were assigned based on both marker genes and scATAC-seq

signals.

Skin scATAC-seq peak count matrix
To ensure our peak set in skin includes ATAC peaks from rare populations, we performed two rounds of peak calling. We first called

peaks on filtered reads from all cells and generated a 1st-round cell-peak countmatrix.We then filtered cells based on both ATAC and

RNA profiles and identified clusters based on RNA profiles. We next called peaks again on aggregated pseudo bulk samples from

each cluster and merged all peak summits, to generate a 2nd-round cell-peak count matrix.

Skin scATAC-seq dimension reduction
To reduce the dimension of ATAC-seq data, we tested cisTopic (Bravo González-Blas et al., 2019), chromVARmotif score and Kmer

(Schep et al., 2017), and snapATAC (Preissl et al., 2018) approaches using default parameters.

Pseudotime inference
To calculate pseudotime based on scATAC-seq data, we analyzed the cells from TACs, IRS and Hair Shaft populations. We pro-

vided 10 normalized topics from cisTopic (Bravo González-Blas et al., 2019) and scATAC UMAP coordinates as inputs to Palantir

(Setty et al., 2019) to construct a diffusion map (palantir.utils.run_diffusion_maps(pca_projections, n_components = 10)). The

pseudotime and branch probabilities were inferred using the following parameters in Palantir (num_waypoints = 1000, knn =

30). We then defined lineages by manually examining the distribution of branch probability and selecting cells above a certain

cutoff.

We calculated pseudotime based on scRNA-seq data similarly to scATAC-seq data. We provided 10 normalized principal com-

ponents (PCs) fromSeurat (Stuart et al., 2019) and scRNAUMAP coordinates as inputs to Palantir (Setty et al., 2019). The pseudotime

and branch probabilities were inferred using the following parameters in Palantir (num_waypoints = 1000, knn = 30). We then defined

lineages by manually examining the distribution of branch probability and selecting cells above a certain cutoff.

Residual analysis
Both DORC scores and gene expression were smoothed over pseudotime with local polynomial regression fitting (loess) separately,

then min-max normalized. The residual for each gene was calculated by subtracting normalized gene expression from normalized

DORC scores.
e8 Cell 183, 1103–1116.e1–e10, November 12, 2020
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Chromatin potential
To calculate chromatin potential, we first smoothed DORC scores (chromatin space) and corresponding gene expression (RNA

space) over a k-nearest neighbor graph (k-NN, k = 50), calculated using normalized ATAC topics from cisTopic. Next, we calculated

another k-NN (k = 10), between the smoothed chromatin profile of a given cell (Catac, i), and the smoothed gene expression profile of

each cell (Crna, i, j). We then calculated the distance (Di, j) between the Catac, i and the average of Crna, j in chromatin space. The arrow

length is defined by normalizing Di, j. For visualization, we smoothed arrows with the 15 k-NNs in low dimensional space. For grid

view, we divided the UMAP space into a 40 3 40 grid, then averaged the arrows for all the cells within each grid.

RNA velocity
RNA velocity was calculated using Velocyto (La Manno et al., 2018) with default settings. For visualization, we smoothed arrows with

the 15 RNA k-NNs. For grid view, we divided the UMAP space into a 40 3 40 grid, then averaged the arrows for all the cells within

each grid.

Cost
SHARE-seq significantly reduces the amount of consumed enzyme by performing all reactions (including ligation, transposition,

reverse transcription, and tagmentation) in bulk (about 10,000 cells per reaction), which dramatically reduces cost. The library prep-

aration cost for SHARE-seq in our hands is only about $433 for 100,000 cells, including approximately $50 oligos, $50 enzymes

(Tn5, ligase, etc.), $121 RNase inhibitors and other consumables. By comparison, the cost of sci-CAR scales with the number of cells

to be recovered. For each experiment, 96 RT reactions, 96 transposition reactions, one tagmentation reaction per 25 nuclei and

2 PCR reactions per 25 nuclei are required. It would cost more than $30,000 to prepare a sequencing library for 100,000 cells for

sci-CAR.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Methods
All of the statistical details for experiments can be found in the figure legends as well as the Method Details section. For all compar-

isons of independent observations between two groups, two-tailed t tests were performed, with p values unless otherwise specified.

Z-tests were used to describe variance across groups.

Reads in Peaks Counts for ATAC-seq Data
To generate peak countmatrices for scATAC-seq data, the number of reads overlapping a given peakwindow in the determined peak

set was calculated for each unique cell barcode. FRIP was computed as the fraction of the number of sequenced reads per cell that

fall in peaks and total unique nuclear reads per cell.

TF motif score
Weused TFmotif scores and gene expression values to calculate the observed Spearman correlation (obs) of each TF-gene pair. The

TF motif scores were derived from chromVAR and were described under the Method Details sections and figure legends. TF motif

scores were root-mean-square normalized and gene expression values were normalized using the SCtransform function in Seurat. Z

scores and p-values were calculated in the same way in the cis-analysis.

Collision rate estimation
We estimate the collision by implementing a solution that was used in the birthday paradox (http://matt.might.net/articles/

counting-hash-collisions/). In SHARE-seq, we introduce three rounds of barcoding during hybridization and ligation with 96 barcodes

for each round. The cells are aliquoted to sub-libraries and another round of barcodes is added to each sub-library during the PCR

step. In each sub-library, the total number of barcode combinations D = 96 3 96 3 96 = 884,736.

The expected number of collisions for N cells in a sub-library is

N�D+D

�
D� 1

D

�N
Assuming we have 20,000 cells recovered per sub-library, the nu
mber of expected collisions is

20000� 844736+ 8447363

�
844736� 1

844736

�20000

= 224
The expected collision rate is 224/20000 z1%. The number of ce
lls that could fit in one SHARE-seq run is 20,000 3 96 z 2 million

with about 1% collision rate.
Cell 183, 1103–1116.e1–e10, November 12, 2020 e9
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Library size estimation
The number of uniquemolecules in scRNA and scATAC (library size) was estimated per cell based on the Lander-Waterman equation

that is implemented in Picard tools.

C=X = 1 � expð�N =XÞ
where X is the number of distinct molecules in the library, N is th
e number of read pairs, and C is the number of distinct fragments

observed in read pairs (UMIs in the case of scRNA).
e10 Cell 183, 1103–1116.e1–e10, November 12, 2020
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Figure S1. The Principle of SHARE-Seq and Data Quality Control on Cell Line Datasets, Related to Figure 1

(A) The structure of scATAC-seq and scRNA-seq sequencing library.

(B) The expected number of barcode combinations exponentially scales with the rounds of barcoding.

(C) Expected barcode collision happens with a large number of cells (> 105).

(D) Aggregate single-cell accessibility and gene expression profiles in GM12878 cells.

(E) Scatterplot of the portion of reads in peaks (FRIP) of GM12878 ATAC-seq data.

(F) The enrichment of ATAC-seq reads around TSSs.

(G) The insert size distribution of ATAC-seq fragments.

(H and I) The SHARE-seq reproducibility between biological replicates on ATAC-seq (H) and RNA-seq (I).

(J) Aggregated ATAC-seq portion of SHARE-seq profile compares to Cusanovich et al. (2015), Pliner et al. (2018), Preissl et al. (2018), SureCell (Lareau et al.,

2019), sci-ATAC-seq (LaFave et al., 2020), Flugidm C1 dataset (Buenrostro et al., 2015), and DNase-seq (ENCODE).

(K and L) The estimated library size (the uniquemolecules could be recovered by sequencing to saturation, estimated based on the duplication rate and recovered

unique molecule) in SHARE-ATAC-seq (K) and SHARE-RNA-seq (L).

(M) The aggregated single-cell SHARE-seq accessibility profiles across different cell lines.

(N) The RNA read distribution of SHARE-seq in the genome.
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Figure S2. SHARE-Seq Generates High-Quality Libraries on Multiple Tissues and Reveals Misassignment of Cell Types in Computational

Paring of ATAC-RNA, Related to Figure 2

(A) The enrichment of ATAC-seq reads around TSSs.

(B) The insert size distribution of ATAC-seq fragments.

(C) Comparison of SHARE-RNA-seq to previously deposited 30 single cell/nuclei adult mouse brain datasets (STAR Methods) in terms of the number of genes

detected.

(D) ATAC UMAP and RNA UMAP colored by the cell type assigned by the joint clustering of ATAC-seq and RNA-seq data in the mouse brain.

(E–G) Comparison of SHARE-seq starting with brain nuclei or brain cells. (E) The RNA read distribution of SHARE-seq in the genome. (F) The fraction of reads in

peaks (frip) of ATAC-seq fragments. (G) The insert size distribution of ATAC-seq fragments.

(H) The hair follicle cell types shift during hair follicle cycles.

(I) Schematic of a computational pipeline to process SHARE-seq data on adult mouse skin.

(J and K) The TF motif scores to gene expression correlation in GM12878 cells (J), skin cells (K). The dots color denotes the significance of the correlation.

(L) ATAC UMAP visualization with Seurat LSI, chromVAR Kmer, and snapATAC approaches (STAR Methods). Points are colored by clusters labels.

(M) Cells colored by the activity of cell cycle genes (left panel). An RNA cluster marked by high expression of cell cycle genes is highlighted in scRNA UMAP (top

right panel) and scATAC UMAP space (bottom right panel).

(N) ATAC UMAP colored by computationally inferred cell type in the mouse brain. The computational pairing was performed by transferring the assigned cluster

label to the ATAC cluster using Seurat (Stuart et al., 2019).

(O) Heatmap showing the proportion of cells in the joint cluster that overlaps in ATAC clusters in the mouse brain.

(P) Marker genes for each assigned cell type in the mouse brain.

(Q) Histogram showing the percentage of cells that are correctly computationally assigned for each cell type in the mouse brain.

(R) UMAP visualization of computationally inferred cell type in mouse skin. The cell type labels are transferred from RNA-seq to ATAC-seq using Seurat (Stuart

et al., 2019).

(S) Histogram showing the percentage of cells that are correctly computationally assigned for each cell type in mouse skin.

(T) The percentage of cells that are correctly computationally assigned for each cell type inmouse skin using Seurat (STARMethods). The RNA reads, ATAC reads

or both RNA and ATAC reads are down-sampled to 50%or 25%of the original number of reads. The full data (35k cells) or randomly selected 5k cells are used for

computation.
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Figure S3. cis Associations Overlap with Known Super-Enhancers and Are Gene and Cell Stage Specific, Related to Figure 3

(A) Distribution of peak-gene associations relative to TSSs in GM12878 cell line data. The distribution is normalized to the distribution of all the ATAC-seq peaks.

(B) The number of significant peak-gene associations for each gene in GM12878 cell line data.

(C) Representative peak-gene associations in GM12878 cell line data. Loops denote the correlation of peak accessibility and RNA expression at the SH3RF3

locus, loop height represents the significance of the correlation.

(D) Fold enrichment of histone modifications in peak-gene association in GM12878 cell line data. The bars are colored by significance of the enrichment.

Downloaded ENCODE histone modification ChIP-seq data were intersected with ATAC-seq peak and compared to randomly selected genomic regions.

(E) The number of genes associated with each significant peak.

(F) Histogram of the number of significant peak-gene associations per gene for all the genes (left) and super-enhancer related genes (right) in GM12878 cell

line data.

(G) The distance of each significant peak-gene association (p < 0.05) to the TSS of each gene.

(H–T) Cis-regulation analysis in the mouse skin dataset.

(H and I) The distribution (H) and p value (I) of peak-gene correlation in the mouse skin dataset.

(J) The number of genes associated with each significant peak for all genes and super-enhancer related genes.

(K) The number of significant peak-gene associations for each peak.

(L) The portion of peaks associated with genes varies with chromatin accessibility level.

(M) The scatterplot showing the length of super-enhancer is not correlated with the number of associated peaks.

(N) The scatterplot showing the number of peaks around a gene and the number of associated peaks to a gene within 50 kp windows of TSSs.

(O) A cumulative distribution function plot of peak-gene associations for each gene.

(P) The overlapping DORCs identified in TAC/IRS/Hair shaft and in all cells.

(Q) DORC activity for each defined cluster, values are normalized by the min and max activity.

(R and S) Differential DORC score between medulla and cuticle/cortex (R) and between medulla and IRS (S).

(T) Scatterplot of the Dlx3 DORC score and Dlx3 gene expression.
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Figure S4. Lineage Priming Validation and Characterization, Related to Figure 4

(A) The scatterplot of the Tubb6 DORC score and Tubb6 gene expression.

(B) Distribution of residual and Spearman correlation of DORC to expression of DORC-regulated genes across cells in the hair shaft lineage.

(C) Change of aggregated chromatin accessibility profiles and aggregated RNA profiles over pseudotime. Loops denote the p-value of chromatin accessibility of

each peak andWnt3 RNA expression. Loop height represents the significance of the correlation. Grey bars denote scATAC-seq peaks. Blue bars denote peaks

that are significantly associated with the Wnt3 gene. The inset shows a zoom-in image of aggregated chromatin accessibility around Wnt3 locus.

(D) Hierarchical clustering of chromatin accessibility peak and expression of associated genes for the hair shaft lineage. Cells are ordered by pseudotime.

(legend continued on next page)
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(E and F) Histogram of the average difference (residuals) for each gene between chromatin accessibility and gene expression with (E) and without (F) bias

correction.

(G) Normalized residuals between chromatin accessibility and gene expression for hair-shaft lineages.

(H) UMAP visualization of DORC and RNA expression in medulla lineage and IRS lineage.

(I) ATAC UMAP visualization of gene expression (top) and motif score (bottom) inferred from ATAC-seq.

(J) Schematic showing the workflow of calculating the TF regulatory network.
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Figure S5. Characterization of Chromatin Potential, Related to Figure 5

(A) Volcano plot of differentially enriched DORCs between Notch1+ and Notch1- lineage-prime cells.

(B) Volcano plot of differentially enriched DORC-regulated genes between Notch1+ and Notch1- lineage-priming cells.

(C) The raw chromatin potential. The arrow denotes the distance between a cell in chromatin accessibility space to its most similar cell in RNA space.

(D) Raw chromatin potential was smoothed by averaging 15 k-nearest neighbors for each given cell.

(E) UMAP colored by normalized DORC score, RNA expression and residual (DORC-RNA) of Lef1, which is a known marker of HS and HS-TAC.

(F) Differential gene expression between the two roots identified by pseudotime and chromatin potential respectively. Marker genes identified in previous reports

(Joost et al., 2020; Yang et al., 2017) are labeled with an asterisk (*)

(legend continued on next page)
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(G) RNA velocity visualized on scATAC UMAP coordinates. Umap colored by pseudotime. The big arrows point to the roots identified by chromatin potential.

(H) Pseudotime inferred using scRNA-seq from SHARE-seq for cell fate decisions shown on scRNA UMAP coordinates.

(I–K) SHARE-seq on different hair follicle stages. The cell types are identified by projecting on SHARE-seq data in Figure 2E. (I,J) UMAP visualization of ATAC

portion of SHARE-seq data on different hair follicle stages. (K) UMAP visualization of the distribution of Anagen III cells. The number was normalized to the total

numbers of Anagen III and Anagen VI cells and smoothed in the UMAP space.

(L) The arrows denote the potential ‘‘future’’ RNA state (observed in another cell) which is best predicted by the current RNA state. The arrows show the most

correlated neighbor in RNA space for a given cell in RNA space.

(M) The arrows denote the potential ‘‘future’’ chromatin state (observed in another cell) which is best predicted by the current chromatin state. The arrows show

the most correlated neighbor in chromatin space for a given cell in chromatin space.

(N) Comparison of the arrow lengths between chromatin potential, RNA-RNA prediction and chromatin-chromatin prediction.

(O) The Pearson correlations between chromatin state of a cell and the potential ‘‘future’’ RNA state of the given cell, predicted by either chromatin potential (left)

or RNA velocity (right).

(P) A scatterplot shows the differences in arrow length between chromatin potential or RNA velocity. The dot color denotes pseudotime.
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